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Figure 8: Implementation of the module SafetyController-Update using Uppaal Model Checker
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- modern robotics are applied in industrial, 
agricultural, medical and domestic domains 

- must be flexible, configurable and adaptive  
- ever-closer human-robot interaction
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ROS Architecture

- Component-based, nodes interacting with each 
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- Synchronous (RPC) and asynchronous (publish-
subscribe) communication 

- Use of explicit timeouts at application level 
- Manually configured message queues and 

processing rates
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is possible to write the action send(42 )! to send a value 42,
and send(x )? to bound a received value to the variable x.

The formal semantics of these extensions is omitted for
simplicity, but can be found in the literature (e.g., [6, 4]).

3.2 Verifying Timed Automata with UPPAAL
UPPAAL [5] is a model-checker toolbox based on the

theory of timed automata which performs forward analy-
sis with extrapolation. It provides some extra features, such
as bounded integer variables and broadcast channels. This
section presents a temporal logic named Timed Computation
Tree Logic (TCTL) [5, 3], used by UPPAAL as a query lan-
guage to describe desired properties of (networks of) timed
automata. This query language consists of path formulas �,
which in turn use more dedicated state formulas  . State
formulas are defined over automata locations and clocks.

Definition 3 (TCTL formulas). A TCTL formula �
is given by the grammar below.

� ::= 93 | 83 | 92 | 82 |  1 !  2

 ::= A.` | g | ¬ |  1 _  2 |  1 ^  2 |  1 )  2

A.` represents the location ` in the automaton A, g is a
clock constraint, and ¬, _, ^ and ) represent the usual
logical negation, disjunction, conjunction, and implication.
The temporal operators 9, 8, 3, and 2 describe the range of
states for which the state formulas  must hold, and  1 !
 2 is a shorthand for 82 ( 1 ) 83 2) (which cannot be
written in our syntax), read  1 leads to  2.

We make precise the meaning of the temporal operators
using the timed automata in Figure 1 as a running example.

93 means that there must exist a sequence of transitions
such that, at some point,  holds. For example, 93S .InitS )
(cS > 19) means that the clock cS can become higher than
19 while in location InitS in S.

- 83 means that for every sequences of transitions, at
some point  can hold. For example, 83 cR > 19 means
that, at any given point of the execution, one can find a
future state where cR is higher than 19.

- 92 means that there must exist a sequence of transitions
such that  always holds. For example, 92 (cS = 11) )
S .Wait means that there exist a sequence of transition where
the clock cS is 11 while the automaton S is in Wait location.

- 82 means that for every sequences of transitions,  must
hold in every intermediate state. For example, 82 (cS �
0 ^ cS  40) means that the clock cS will always be within
0 and 40 in the automaton S at any point of executions.

-  1 !  2 (i.e., 82 ( 1 ) 83 2)) denotes that when-
ever  1 holds then  2 must eventually hold. For example,
S .Wait ! R.Transmit means that, once S .Wait is reached,
R.Transmit will always be reachable.

4. VERIFYING ROS APPLICATIONS
This section describes how to model and verify ROS-based

applications with time constraints, using as a running exam-
ple a publisher-subscriber implementation. We start by ex-
ploring how to extract key parameters from the source code
of ROS applications (Subection 4.1), which are then used to
formally model them as a network of timed automata (Sub-
section 4.2). UPPAAL is then used to reason and to verify
properties about such applications (Subsection 4.3).

Code Snippet 2: A Subscriber Node

void chatterCallback(const
std_msgs::String::ConstPtr msg) {

//... do some work ...
}

int main(int argc, char **argv) {
ros::init(argc, argv, "listener");
ros::NodeHandle n;
ros::Subscriber sub =

n.subscribe<std_msgs::String>("chatter",
1000, chatterCallback);

ros::Rate loop_rate(10);
while (ros::ok()) {

//... do some work ...
ros::spinOnce();
loop_rate.sleep();

}
return 0;

}

4.1 Code Analysis of a ROS Application
The fundamental components in ROS-based applications

include nodes (or processes), transmission channels (or top-
ics), and messages. Nodes communicate via a publisher-
subscriber message passing mechanism: a publisher can send
a message to a given channel, and every subscriber of that
channel will receive the message. Publisher nodes send mes-
sages to a channel by adding them into the channel’s queue,
which are subsequently dequeued and added to the sub-
scribers’ queue. Observe that the same channel can be used
by multiple publishers and subscribers [9].
An example of a subscriber node in ROS is depicted in

Code Snippet 2. Observe that the node subscribes the chan-
nel chatter of the message type std_msgs::String, with a
queue-size of 1000. By invoking ros::spinOnce in a regular
interval (the loop_rate object is set to 10 in this exam-
ple), the node processes incoming messages in the queue by
executing the callback function chatterCallback.

Code Snippet 1: Publisher “Talker.cpp”

int main(int argc, char **argv) {
ros::init(argc, argv, "talker");
ros::NodeHandle n;
ros::Publisher chatter_pub =

n.advertise<std_msgs::String>("chatter",
1000);

ros::Rate loop_rate(10);
while (ros::ok()) {

std_msgs::String msg;
//... do some work ...
chatter_pub.publish(msg);
loop_rate.sleep();

}
return 0;

}

Observe that the rate at which ROS can empty a publish-
ing queue depends on the time taken to actually transmit the
messages to subscribers, and is largely out of our control. In
contrast, the speed with which ROS empties a subscribing
queue depends on how quickly it processes callbacks. Thus,

is possible to write the action send(42 )! to send a value 42,
and send(x )? to bound a received value to the variable x.

The formal semantics of these extensions is omitted for
simplicity, but can be found in the literature (e.g., [6, 4]).

3.2 Verifying Timed Automata with UPPAAL
UPPAAL [5] is a model-checker toolbox based on the

theory of timed automata which performs forward analy-
sis with extrapolation. It provides some extra features, such
as bounded integer variables and broadcast channels. This
section presents a temporal logic named Timed Computation
Tree Logic (TCTL) [5, 3], used by UPPAAL as a query lan-
guage to describe desired properties of (networks of) timed
automata. This query language consists of path formulas �,
which in turn use more dedicated state formulas  . State
formulas are defined over automata locations and clocks.

Definition 3 (TCTL formulas). A TCTL formula �
is given by the grammar below.

� ::= 93 | 83 | 92 | 82 |  1 !  2

 ::= A.` | g | ¬ |  1 _  2 |  1 ^  2 |  1 )  2

A.` represents the location ` in the automaton A, g is a
clock constraint, and ¬, _, ^ and ) represent the usual
logical negation, disjunction, conjunction, and implication.
The temporal operators 9, 8, 3, and 2 describe the range of
states for which the state formulas  must hold, and  1 !
 2 is a shorthand for 82 ( 1 ) 83 2) (which cannot be
written in our syntax), read  1 leads to  2.

We make precise the meaning of the temporal operators
using the timed automata in Figure 1 as a running example.

93 means that there must exist a sequence of transitions
such that, at some point,  holds. For example, 93S .InitS )
(cS > 19) means that the clock cS can become higher than
19 while in location InitS in S.

- 83 means that for every sequences of transitions, at
some point  can hold. For example, 83 cR > 19 means
that, at any given point of the execution, one can find a
future state where cR is higher than 19.

- 92 means that there must exist a sequence of transitions
such that  always holds. For example, 92 (cS = 11) )
S .Wait means that there exist a sequence of transition where
the clock cS is 11 while the automaton S is in Wait location.

- 82 means that for every sequences of transitions,  must
hold in every intermediate state. For example, 82 (cS �
0 ^ cS  40) means that the clock cS will always be within
0 and 40 in the automaton S at any point of executions.

-  1 !  2 (i.e., 82 ( 1 ) 83 2)) denotes that when-
ever  1 holds then  2 must eventually hold. For example,
S .Wait ! R.Transmit means that, once S .Wait is reached,
R.Transmit will always be reachable.

4. VERIFYING ROS APPLICATIONS
This section describes how to model and verify ROS-based

applications with time constraints, using as a running exam-
ple a publisher-subscriber implementation. We start by ex-
ploring how to extract key parameters from the source code
of ROS applications (Subection 4.1), which are then used to
formally model them as a network of timed automata (Sub-
section 4.2). UPPAAL is then used to reason and to verify
properties about such applications (Subsection 4.3).

Code Snippet 2: A Subscriber Node

void chatterCallback(const
std_msgs::String::ConstPtr msg) {

//... do some work ...
}

int main(int argc, char **argv) {
ros::init(argc, argv, "listener");
ros::NodeHandle n;
ros::Subscriber sub =

n.subscribe<std_msgs::String>("chatter",
1000, chatterCallback);

ros::Rate loop_rate(10);
while (ros::ok()) {

//... do some work ...
ros::spinOnce();
loop_rate.sleep();

}
return 0;

}

4.1 Code Analysis of a ROS Application
The fundamental components in ROS-based applications

include nodes (or processes), transmission channels (or top-
ics), and messages. Nodes communicate via a publisher-
subscriber message passing mechanism: a publisher can send
a message to a given channel, and every subscriber of that
channel will receive the message. Publisher nodes send mes-
sages to a channel by adding them into the channel’s queue,
which are subsequently dequeued and added to the sub-
scribers’ queue. Observe that the same channel can be used
by multiple publishers and subscribers [9].
An example of a subscriber node in ROS is depicted in

Code Snippet 2. Observe that the node subscribes the chan-
nel chatter of the message type std_msgs::String, with a
queue-size of 1000. By invoking ros::spinOnce in a regular
interval (the loop_rate object is set to 10 in this exam-
ple), the node processes incoming messages in the queue by
executing the callback function chatterCallback.

Code Snippet 1: Publisher “Talker.cpp”

int main(int argc, char **argv) {
ros::init(argc, argv, "talker");
ros::NodeHandle n;
ros::Publisher chatter_pub =

n.advertise<std_msgs::String>("chatter",
1000);

ros::Rate loop_rate(10);
while (ros::ok()) {

std_msgs::String msg;
//... do some work ...
chatter_pub.publish(msg);
loop_rate.sleep();

}
return 0;

}

Observe that the rate at which ROS can empty a publish-
ing queue depends on the time taken to actually transmit the
messages to subscribers, and is largely out of our control. In
contrast, the speed with which ROS empties a subscribing
queue depends on how quickly it processes callbacks. Thus,
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of ROS applications (Subection 4.1), which are then used to
formally model them as a network of timed automata (Sub-
section 4.2). UPPAAL is then used to reason and to verify
properties about such applications (Subsection 4.3).
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contrast, the speed with which ROS empties a subscribing
queue depends on how quickly it processes callbacks. Thus,
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This section describes how to model and verify ROS-based
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ple a publisher-subscriber implementation. We start by ex-
ploring how to extract key parameters from the source code
of ROS applications (Subection 4.1), which are then used to
formally model them as a network of timed automata (Sub-
section 4.2). UPPAAL is then used to reason and to verify
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//... do some work ...
ros::spinOnce();
loop_rate.sleep();

}
return 0;

}

4.1 Code Analysis of a ROS Application
The fundamental components in ROS-based applications

include nodes (or processes), transmission channels (or top-
ics), and messages. Nodes communicate via a publisher-
subscriber message passing mechanism: a publisher can send
a message to a given channel, and every subscriber of that
channel will receive the message. Publisher nodes send mes-
sages to a channel by adding them into the channel’s queue,
which are subsequently dequeued and added to the sub-
scribers’ queue. Observe that the same channel can be used
by multiple publishers and subscribers [9].
An example of a subscriber node in ROS is depicted in

Code Snippet 2. Observe that the node subscribes the chan-
nel chatter of the message type std_msgs::String, with a
queue-size of 1000. By invoking ros::spinOnce in a regular
interval (the loop_rate object is set to 10 in this exam-
ple), the node processes incoming messages in the queue by
executing the callback function chatterCallback.

Code Snippet 1: Publisher “Talker.cpp”

int main(int argc, char **argv) {
ros::init(argc, argv, "talker");
ros::NodeHandle n;
ros::Publisher chatter_pub =

n.advertise<std_msgs::String>("chatter",
1000);

ros::Rate loop_rate(10);
while (ros::ok()) {

std_msgs::String msg;
//... do some work ...
chatter_pub.publish(msg);
loop_rate.sleep();

}
return 0;

}

Observe that the rate at which ROS can empty a publish-
ing queue depends on the time taken to actually transmit the
messages to subscribers, and is largely out of our control. In
contrast, the speed with which ROS empties a subscribing
queue depends on how quickly it processes callbacks. Thus,
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Figure 2: Simple ROS publisher-subscriber scenario.

the publisher Pi and the channel Chj , and Qi j a queue as-
sociated with the subscriber Pi and the channel Chj . This
ROS publisher-subscriber mechanism is modelled in Fig-
ure 3 as timed automata. Di↵erent values of the parameters
PubTime, SubTime, Tmin, Tmax, CBmin, and CBmax yield
di↵erent variations of the automata.

Publishers P1 and P2 are uniquely identified with id as a
parameter (Figure 3(a)), and send messages every PubTime
time-units. The subscriber invokes ros::spinOnce to pro-
cess callbacks every SubTime time-units (Figure 3(b)), and
the transmission of messages over the channel takes between
Tmin and Tmax time-units (Figure 3(e)). Variable CBavail
represents the number of queued callback invocations, and
is shared by the automata in Figures 3(d) and 3(f). The
replaceOld() method of Q3 1 replaces the oldest message in
the queue by the upcoming message when the queue is full.

When ros::spinOnce is invoked the method callAvailable()
is called on the callback queue CBQ, which processes all call-
backs currently in the queue. The processing of callbacks
takes between CBmin and CBmax time-units. Observe that
we model the callAvailable() method without a timeout
parameter in ros::CallbackQueue (Figure 3(f)).

4.3 Verification in UPPAAL
The corresponding implementation of the models in UP-

PAAL is presented in Appendix A. Varying queue sizes and
time constraints, we verify the following properties about the
associated queues (“whether no path leads to an overflow of
the queue”) using the UPPAAL model checker:

Pr1: 82 ¬Q1!1.Overflow
Pr2: 82 ¬Q2!1.Overflow
Pr3: 82 ¬Q3 1.Overflow

Using UPPAAL it is possible to experiment di↵erent com-
binations of values of parameters and investigate which ones
validate these desired properties. The parameters define the
three queue sizes, the transmission time, the processing call-
back time, the publishing time-gap, and the spin time-gap.

For example, using the assignment Q1!1 = Q2!1 = Q3 1

= 5, Tmin = 3, Tmax = 4, P1.PubTime = 8, P2.PubTime =
7, and P3.SubTime = 15, none of the three properties hold.
By using instead P2.PubTime = 8 and P3.SubTime = 18
the properties Pr1 and Pr2 hold, and all property hold if we
lower the value of P3.SubTime to 17.

5. CASE STUDY: KOBUKI ROBOT
Kobuki is a ROS open source robotic application23 devel-

oped by Yujin Robotics (Korean firm) and Willow Garage
2http://wiki.ros.org/kobuki
3https://github.com/yujinrobot/kobuki

(from USA) for research and educational purposes.

5.1 Kobuki Source Code Analysis
Kobuki is integrated with various sensors, velocity con-

trollers, a command multiplexer, and a high precision mo-
tor. The schematic diagram of its ROS-based architecture
is depicted in Figure 4. Our analysis focuses on the Safety-
Controller, which identifies obstacles and tries to move the
robot to a safer position, and theMultiplexer, which manages
movement messages that arrive from di↵erent controllers.
The SafetyController-Update node subscribes the events/

wheel drop, events/bumper and events/cli↵ channels, to re-
ceive messages from the wheel-drop, bumper and cli↵ sen-
sors, respectively. Published messages are enqueued into
the corresponding subscriber queues (QWheel, QBumper,
and QCli↵, respectively). These queues are inspected at
a given rate by invoking the callAvailable() method, process-
ing the sensor messages and updating shared boolean state
variables capturing, e.g., if the left wheel is dropped. Based
on these shared variables, the SafetyController-Publisher node
publishes at a fixed rate command-velocity (CmdVel) mes-
sages to a channel subscribed by the Multiplexer node, such
as “stop” when wheel-drop events occurs or “move back” if
the bumper is pressed or a cli↵ detected. In turn, Multiplexer
combines these messages with messages from other nodes
that control the robot, like a RandomWalker node, giving
higher priority to messages from the safety controller.

5.2 Timed Modeling of the Safety Controller
This section formally specifies the SafetyController-Up-

date component. SafetyController-Publisher can be mod-
elled as a traditional publisher, as depicted in Section 4.2.
The upper half of the architecture from Figure 4 is mod-

elled by the automata in Figure 5. Figure 5(a) models any
of the three sensors (Wheel-Drop, Bumper, or Cli↵ ) and
their position (Left, Center, or Right)). Its time constraint
ensures that sensors wait at least 1 time unit before pub-
lishing a new message. Figure 5(b) models any of the sub-
scriber queues assigned to the safety controller. The variable
CBavail, shared with the automaton in Figure 5(d), captures
the amount of received messages, which will trigger the ad-
dition of callbacks to the callback queue.
The SafetyController-Update node (Figure 5(c)) is a sub-

scriber that processes incoming sensor messages by invok-
ing ros::spinOnce and updates the state accordingly. This
is done by periodically calling callAvailable() (Figure 5(d)),
which processes all callbacks in the callback queue. The for-
mer periodically calls ros::spinOnce based on the spinRate
parameter. Observe that callAvailable() is parameterised by
a TimeOut parameter that controls how long to wait for a
callback to be available before returning. In ROS 0.10 the
default timeout is 0.1 seconds, whereas in ROS 0.11 it is 0
seconds. A complete implementation of the SafetyController-
Update is included in Appendix B for reviewing purposes.

UPPAAL Verification of SafetyController-Update.
Using the timed automata models in Figure 5 it is possi-
ble to experiment with di↵erent parameters and queue sizes
and verify if desired properties are valid. The results of such
experiments can be found in Table 1, using the properties
PrW , PrB , and PrC .One can conclude, for example, that no
sensor will overflow its queue when all queues have size 12,
the spin rate of the safety controller and the timeout for the
callAvailable are 1, and the callback time is between 1 and 2.
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Figure 2: Simple ROS publisher-subscriber scenario.

the publisher Pi and the channel Chj , and Qi j a queue as-
sociated with the subscriber Pi and the channel Chj . This
ROS publisher-subscriber mechanism is modelled in Fig-
ure 3 as timed automata. Di↵erent values of the parameters
PubTime, SubTime, Tmin, Tmax, CBmin, and CBmax yield
di↵erent variations of the automata.

Publishers P1 and P2 are uniquely identified with id as a
parameter (Figure 3(a)), and send messages every PubTime
time-units. The subscriber invokes ros::spinOnce to pro-
cess callbacks every SubTime time-units (Figure 3(b)), and
the transmission of messages over the channel takes between
Tmin and Tmax time-units (Figure 3(e)). Variable CBavail
represents the number of queued callback invocations, and
is shared by the automata in Figures 3(d) and 3(f). The
replaceOld() method of Q3 1 replaces the oldest message in
the queue by the upcoming message when the queue is full.

When ros::spinOnce is invoked the method callAvailable()
is called on the callback queue CBQ, which processes all call-
backs currently in the queue. The processing of callbacks
takes between CBmin and CBmax time-units. Observe that
we model the callAvailable() method without a timeout
parameter in ros::CallbackQueue (Figure 3(f)).

4.3 Verification in UPPAAL
The corresponding implementation of the models in UP-

PAAL is presented in Appendix A. Varying queue sizes and
time constraints, we verify the following properties about the
associated queues (“whether no path leads to an overflow of
the queue”) using the UPPAAL model checker:

Pr1: 82 ¬Q1!1.Overflow
Pr2: 82 ¬Q2!1.Overflow
Pr3: 82 ¬Q3 1.Overflow

Using UPPAAL it is possible to experiment di↵erent com-
binations of values of parameters and investigate which ones
validate these desired properties. The parameters define the
three queue sizes, the transmission time, the processing call-
back time, the publishing time-gap, and the spin time-gap.

For example, using the assignment Q1!1 = Q2!1 = Q3 1

= 5, Tmin = 3, Tmax = 4, P1.PubTime = 8, P2.PubTime =
7, and P3.SubTime = 15, none of the three properties hold.
By using instead P2.PubTime = 8 and P3.SubTime = 18
the properties Pr1 and Pr2 hold, and all property hold if we
lower the value of P3.SubTime to 17.

5. CASE STUDY: KOBUKI ROBOT
Kobuki is a ROS open source robotic application23 devel-

oped by Yujin Robotics (Korean firm) and Willow Garage
2http://wiki.ros.org/kobuki
3https://github.com/yujinrobot/kobuki

(from USA) for research and educational purposes.

5.1 Kobuki Source Code Analysis
Kobuki is integrated with various sensors, velocity con-

trollers, a command multiplexer, and a high precision mo-
tor. The schematic diagram of its ROS-based architecture
is depicted in Figure 4. Our analysis focuses on the Safety-
Controller, which identifies obstacles and tries to move the
robot to a safer position, and theMultiplexer, which manages
movement messages that arrive from di↵erent controllers.
The SafetyController-Update node subscribes the events/

wheel drop, events/bumper and events/cli↵ channels, to re-
ceive messages from the wheel-drop, bumper and cli↵ sen-
sors, respectively. Published messages are enqueued into
the corresponding subscriber queues (QWheel, QBumper,
and QCli↵, respectively). These queues are inspected at
a given rate by invoking the callAvailable() method, process-
ing the sensor messages and updating shared boolean state
variables capturing, e.g., if the left wheel is dropped. Based
on these shared variables, the SafetyController-Publisher node
publishes at a fixed rate command-velocity (CmdVel) mes-
sages to a channel subscribed by the Multiplexer node, such
as “stop” when wheel-drop events occurs or “move back” if
the bumper is pressed or a cli↵ detected. In turn, Multiplexer
combines these messages with messages from other nodes
that control the robot, like a RandomWalker node, giving
higher priority to messages from the safety controller.

5.2 Timed Modeling of the Safety Controller
This section formally specifies the SafetyController-Up-

date component. SafetyController-Publisher can be mod-
elled as a traditional publisher, as depicted in Section 4.2.
The upper half of the architecture from Figure 4 is mod-

elled by the automata in Figure 5. Figure 5(a) models any
of the three sensors (Wheel-Drop, Bumper, or Cli↵ ) and
their position (Left, Center, or Right)). Its time constraint
ensures that sensors wait at least 1 time unit before pub-
lishing a new message. Figure 5(b) models any of the sub-
scriber queues assigned to the safety controller. The variable
CBavail, shared with the automaton in Figure 5(d), captures
the amount of received messages, which will trigger the ad-
dition of callbacks to the callback queue.
The SafetyController-Update node (Figure 5(c)) is a sub-

scriber that processes incoming sensor messages by invok-
ing ros::spinOnce and updates the state accordingly. This
is done by periodically calling callAvailable() (Figure 5(d)),
which processes all callbacks in the callback queue. The for-
mer periodically calls ros::spinOnce based on the spinRate
parameter. Observe that callAvailable() is parameterised by
a TimeOut parameter that controls how long to wait for a
callback to be available before returning. In ROS 0.10 the
default timeout is 0.1 seconds, whereas in ROS 0.11 it is 0
seconds. A complete implementation of the SafetyController-
Update is included in Appendix B for reviewing purposes.

UPPAAL Verification of SafetyController-Update.
Using the timed automata models in Figure 5 it is possi-
ble to experiment with di↵erent parameters and queue sizes
and verify if desired properties are valid. The results of such
experiments can be found in Table 1, using the properties
PrW , PrB , and PrC .One can conclude, for example, that no
sensor will overflow its queue when all queues have size 12,
the spin rate of the safety controller and the timeout for the
callAvailable are 1, and the callback time is between 1 and 2.
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the publisher Pi and the channel Chj , and Qi j a queue as-
sociated with the subscriber Pi and the channel Chj . This
ROS publisher-subscriber mechanism is modelled in Fig-
ure 3 as timed automata. Di↵erent values of the parameters
PubTime, SubTime, Tmin, Tmax, CBmin, and CBmax yield
di↵erent variations of the automata.

Publishers P1 and P2 are uniquely identified with id as a
parameter (Figure 3(a)), and send messages every PubTime
time-units. The subscriber invokes ros::spinOnce to pro-
cess callbacks every SubTime time-units (Figure 3(b)), and
the transmission of messages over the channel takes between
Tmin and Tmax time-units (Figure 3(e)). Variable CBavail
represents the number of queued callback invocations, and
is shared by the automata in Figures 3(d) and 3(f). The
replaceOld() method of Q3 1 replaces the oldest message in
the queue by the upcoming message when the queue is full.

When ros::spinOnce is invoked the method callAvailable()
is called on the callback queue CBQ, which processes all call-
backs currently in the queue. The processing of callbacks
takes between CBmin and CBmax time-units. Observe that
we model the callAvailable() method without a timeout
parameter in ros::CallbackQueue (Figure 3(f)).

4.3 Verification in UPPAAL
The corresponding implementation of the models in UP-

PAAL is presented in Appendix A. Varying queue sizes and
time constraints, we verify the following properties about the
associated queues (“whether no path leads to an overflow of
the queue”) using the UPPAAL model checker:

Pr1: 82 ¬Q1!1.Overflow
Pr2: 82 ¬Q2!1.Overflow
Pr3: 82 ¬Q3 1.Overflow

Using UPPAAL it is possible to experiment di↵erent com-
binations of values of parameters and investigate which ones
validate these desired properties. The parameters define the
three queue sizes, the transmission time, the processing call-
back time, the publishing time-gap, and the spin time-gap.

For example, using the assignment Q1!1 = Q2!1 = Q3 1

= 5, Tmin = 3, Tmax = 4, P1.PubTime = 8, P2.PubTime =
7, and P3.SubTime = 15, none of the three properties hold.
By using instead P2.PubTime = 8 and P3.SubTime = 18
the properties Pr1 and Pr2 hold, and all property hold if we
lower the value of P3.SubTime to 17.

5. CASE STUDY: KOBUKI ROBOT
Kobuki is a ROS open source robotic application23 devel-

oped by Yujin Robotics (Korean firm) and Willow Garage
2http://wiki.ros.org/kobuki
3https://github.com/yujinrobot/kobuki

(from USA) for research and educational purposes.

5.1 Kobuki Source Code Analysis
Kobuki is integrated with various sensors, velocity con-

trollers, a command multiplexer, and a high precision mo-
tor. The schematic diagram of its ROS-based architecture
is depicted in Figure 4. Our analysis focuses on the Safety-
Controller, which identifies obstacles and tries to move the
robot to a safer position, and theMultiplexer, which manages
movement messages that arrive from di↵erent controllers.
The SafetyController-Update node subscribes the events/

wheel drop, events/bumper and events/cli↵ channels, to re-
ceive messages from the wheel-drop, bumper and cli↵ sen-
sors, respectively. Published messages are enqueued into
the corresponding subscriber queues (QWheel, QBumper,
and QCli↵, respectively). These queues are inspected at
a given rate by invoking the callAvailable() method, process-
ing the sensor messages and updating shared boolean state
variables capturing, e.g., if the left wheel is dropped. Based
on these shared variables, the SafetyController-Publisher node
publishes at a fixed rate command-velocity (CmdVel) mes-
sages to a channel subscribed by the Multiplexer node, such
as “stop” when wheel-drop events occurs or “move back” if
the bumper is pressed or a cli↵ detected. In turn, Multiplexer
combines these messages with messages from other nodes
that control the robot, like a RandomWalker node, giving
higher priority to messages from the safety controller.

5.2 Timed Modeling of the Safety Controller
This section formally specifies the SafetyController-Up-

date component. SafetyController-Publisher can be mod-
elled as a traditional publisher, as depicted in Section 4.2.
The upper half of the architecture from Figure 4 is mod-

elled by the automata in Figure 5. Figure 5(a) models any
of the three sensors (Wheel-Drop, Bumper, or Cli↵ ) and
their position (Left, Center, or Right)). Its time constraint
ensures that sensors wait at least 1 time unit before pub-
lishing a new message. Figure 5(b) models any of the sub-
scriber queues assigned to the safety controller. The variable
CBavail, shared with the automaton in Figure 5(d), captures
the amount of received messages, which will trigger the ad-
dition of callbacks to the callback queue.
The SafetyController-Update node (Figure 5(c)) is a sub-

scriber that processes incoming sensor messages by invok-
ing ros::spinOnce and updates the state accordingly. This
is done by periodically calling callAvailable() (Figure 5(d)),
which processes all callbacks in the callback queue. The for-
mer periodically calls ros::spinOnce based on the spinRate
parameter. Observe that callAvailable() is parameterised by
a TimeOut parameter that controls how long to wait for a
callback to be available before returning. In ROS 0.10 the
default timeout is 0.1 seconds, whereas in ROS 0.11 it is 0
seconds. A complete implementation of the SafetyController-
Update is included in Appendix B for reviewing purposes.

UPPAAL Verification of SafetyController-Update.
Using the timed automata models in Figure 5 it is possi-
ble to experiment with di↵erent parameters and queue sizes
and verify if desired properties are valid. The results of such
experiments can be found in Table 1, using the properties
PrW , PrB , and PrC .One can conclude, for example, that no
sensor will overflow its queue when all queues have size 12,
the spin rate of the safety controller and the timeout for the
callAvailable are 1, and the callback time is between 1 and 2.
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Figure 3: Formal timed modelling of a ROS publisher-subscriber message passing scenario.

Queue sizes of

safety controller

Spin time-gap of

safety controller

callAvailable()

timeout

Callback

time

Properties

QWheel QBumper QCli↵ spinRate TimeOut CBmin CBmax PrW PrB PrC

10 10 10

1

2 1 2 X 7 7
4 1 2 X 7 7

2 2 1 2 X 7 7
3 2 1 2 7 7 7

12 12 12

1 1

1 2 X X X
4 5 7 7 7

3 2 1 2 X 7 7
6 2 1 2 7 7 7

Table 1: Queue-Overflow w.r.t. various dependable parameters in the module SafetyController-Update.

5.3 Finding problems in Kobuki
In addition to the above safety properties pertaining to

queue overflow, this section identifies some desirable, con-
text specific, properties of the Kobuki system. Uusing the
UPPAAL model checker, we will show that the safety con-
troller node may lose (important) information from the sen-
sors in the presence of overflows (Subsection 5.3.1), and that
in some scenarios, messages from the RandomWalker never
reach the Kobuki engine (Subsection 5.3.2).

5.3.1 Lost Sensor Messages

The models in Figure 5 feature the timing constraints and
queue sizes but do not encode the particular behaviour of the
Kobuki nodes, like the message processing or the update of
the internal state. This subsection shows that a sensor—we
will use the left wheel sensor—may fail to trigger the desired
change in the state variables of the safety controller. For

this, we enhance the model for the wheel sensor by replacing
the one in Figure 5(a) by an equivalent one that alternates
between on and o↵ states. Assuming the safety controller
state variable wheel left dropped represents if the wheel is
dropped, the desired property can be formulated as follows.

Wheel Left.on & SafetyController-Update.spinLoc !
wheel left dropped (Sensor-Property)

This formula asserts that, whenever the left wheel is dropped
and the safety controller invokes ros::spinOnce, the event
will eventually be reflected in the corresponding safety con-
troller’s state variable wheel left dropped.
The property validity depends on whether the subscriber

queue QWheel may or not overflow. If QWheel can overflow,
the property will not be satisfied, since the Wheel Left.on
sensor message may be replaced by other sensor message
due to queue-overflow. Otherwise the property holds, which
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Table 1: Queue-Overflow w.r.t. various dependable parameters in the ROS application of Figure 2
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Table 2: Queue-Overflow w.r.t. various dependable parameters in the module SafetyController-Update.
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Figure 8: Implementation of the module SafetyController-Update using Uppaal Model Checker
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