
Modeling Families of Public Licensing Services: A Case Study

Guillermina Cledou Luis. Barbosa

HASLab INESCTEC and Universidade do Minho

FormaliSE2017

May 27, 2017 1 / 17

Outline

1 Part I
Context and motivation
Modeling families of services with FTA
Verifying properties of families of services with Uppaal

2 Part II
Analyzing FTA
Enriching FTA

May 27, 2017 2 / 17

Service Delivery in E-Government

Challenges
Rapid development
Service integration
Cost reduction
Conformance with laws and regulations

In Practice
Ad-hoc ICT solutions disregarding common functionality and shared processes

May 27, 2017 3 / 17

Service Delivery in E-Government

Challenges
Rapid development
Service integration
Cost reduction
Conformance with laws and regulations

In Practice
Ad-hoc ICT solutions disregarding common functionality and shared processes

May 27, 2017 3 / 17

Public Licensing Services

Queue

Applicant

Authority

Pre-assess

Assess

Credit Card Paypal

submits gets

Payment

incomplete/reject/accept

pays

conf/error

⊻

appeals*

*

**

*

*

May 27, 2017 4 / 17

How can we address existing challenges?

Challenges
Rapid development
Service integration
Cost reduction
Conformance with laws and regulations

}
Formal Methods

Software Product Lines

May 27, 2017 5 / 17

Software Product Line

A set of software systems that share a high number of features while differing on others,
where concrete configurations are derived from a core of common assets in a prescribed
way.

Feature
A characteristic or behavior of a system that is visible to the user.
e.g., pay , cc, pp, ...

Feature model
Expresses valid feature combinations, i.e., the set of systems that can be derived
from the SPL
e.g., {{pay , cc, pp }, {pay , cc }, {pay , pp },{}}

May 27, 2017 6 / 17

Software Product Line

A set of software systems that share a high number of features while differing on others,
where concrete configurations are derived from a core of common assets in a prescribed
way.

Feature
A characteristic or behavior of a system that is visible to the user.
e.g., pay , cc, pp, ...

Feature model
Expresses valid feature combinations, i.e., the set of systems that can be derived
from the SPL
e.g., {{pay , cc, pp }, {pay , cc }, {pay , pp },{}}

May 27, 2017 6 / 17

Software Product Line

A set of software systems that share a high number of features while differing on others,
where concrete configurations are derived from a core of common assets in a prescribed
way.

Feature
A characteristic or behavior of a system that is visible to the user.
e.g., pay , cc, pp, ...

Feature model
Expresses valid feature combinations, i.e., the set of systems that can be derived
from the SPL
e.g., {{pay , cc, pp }, {pay , cc }, {pay , pp },{}}

May 27, 2017 6 / 17

A Modeling formalism for SPL

Feature Timed Automata (FTA)
Extends Timed Automata with variability
Enables the verification of the entire SPL by capturing its behavior in a single model

Queue

Applicant

Authority

Pre-assess

Assess

Credit Card Paypal

submits gets

Payment

incomplete/reject/accept

pays

conf/error

⊻

appeals*

*

**

*

* `0 `1

tpp ≤ 1

paypp
pp, tpp := 0

paidpp
pp

cancelpp
pp

fm = >

May 27, 2017 7 / 17

Uppaal

Real-time model checker
Used by academics and industry

(a) Application

(b) Authority

(c) PreProcessing

(d) PayPal

(e) CreditCard (f) Processing

(g) Queue

(h) selectPayment

(i) mergePaid

(j) mergeCancelPay

Fig. 2: UPPAAL automata with FTA variability modeling domain functionality.

TABLE I: Examples of verifiable temporal properties in Uppaal (using Uppaal’s syntax).

Property Ref

Liveness ap0.apply --> (ap0.accepted || ap0.incomplete_app || ap0.payment_cancelled || ap0.rejected) P1
(mergeCancelPay(0).Lpp || mergeCancelPay(0).Lcc) --> ap0.payment_cancelled P2

Reachability !cc --> !(exists(i:app_id) (CreditCard(i).L1 || mergeCancelPay(i).Lcc || mergePaid(i).Lcc)) P3
Safety A[] ap0.submitted imply ap0.tproc <= 90+31 P4

A[] ap3.appealed imply ap3.tapl <=60 P5
A[] forall(i:app_id) !(auth0.inOpenApps(i) && auth1.inOpenApps(i)) P6

Fig. 3: UPPAAL automaton modeling the feature model.

the models satisfy a given property using well known real-
time model checkers, such as UPPAAL. However, despite
advantages of FTA, as we continued to refine the models of the
case study discussed, we notice that further support is needed
for more modular and compositional modeling of families
of services. We propose a simple scenario to illustrate how
orchestrating the interaction of FTA with variable orchestration
mechanism, i.e., depending on the presence of features, can
become cumbersome and error prone.

In alignment with the only-once principle mentioned in
Section II, a typical scenario is the ability to consult relevant
agencies whether a given applicant possesses a criminal record

or has all tax duties in order. We model such external sources
as FTA in Figure 4 (left). The model on the top left represents
an external database that receives a request to check a given tax
number (checkTax) and provides a response certifying whether
tax duties are in order (resTax), while the model on the bottom
left represents an external database that receives a request
to check a person ID (checkCR) and provides a response
certifying whether the person has criminal records (resCR).
Their presence depends on features tx and cr , respectively.

In this scenario, the authority must consult the required
external sources, if available, and wait for their responses
before deciding to grant the license. Figure 4 (right) shows
such an FTA, which is a simplification of automata Processing
from Figure 2. When an application is ready to be assessed
(assess), the authority consults external sources (checkES) if
supported by the service, waits until all responses are ready
(results), and makes a decision. In case the service does not
support consultation of external sources the authority can
directly make a decision.

The complication arise when modeling the interaction be-
tween the new FTA Assess and the external databases. First,

May 27, 2017 8 / 17

Modeling variability in Uppaal

May 27, 2017 9 / 17

Verifying properties in Uppaal

Example properties
An application eventually results in accepted, rejected, incomplete, or canceled
An application is processed within 121 days
An application can not be opened by more than one authority
...

(a) Application

(b) Authority

(c) PreProcessing

(d) PayPal

(e) CreditCard (f) Processing

(g) Queue

(h) selectPayment

(i) mergePaid

(j) mergeCancelPay

Fig. 2: UPPAAL automata with FTA variability modeling domain functionality.

TABLE I: Examples of verifiable temporal properties in Uppaal (using Uppaal’s syntax).

Property Ref

Liveness ap0.apply --> (ap0.accepted || ap0.incomplete_app || ap0.payment_cancelled || ap0.rejected) P1
(mergeCancelPay(0).Lpp || mergeCancelPay(0).Lcc) --> ap0.payment_cancelled P2

Reachability !cc --> !(exists(i:app_id) (CreditCard(i).L1 || mergeCancelPay(i).Lcc || mergePaid(i).Lcc)) P3
Safety A[] ap0.submitted imply ap0.tproc <= 90+31 P4

A[] ap3.appealed imply ap3.tapl <=60 P5
A[] forall(i:app_id) !(auth0.inOpenApps(i) && auth1.inOpenApps(i)) P6

Fig. 3: UPPAAL automaton modeling the feature model.

the models satisfy a given property using well known real-
time model checkers, such as UPPAAL. However, despite
advantages of FTA, as we continued to refine the models of the
case study discussed, we notice that further support is needed
for more modular and compositional modeling of families
of services. We propose a simple scenario to illustrate how
orchestrating the interaction of FTA with variable orchestration
mechanism, i.e., depending on the presence of features, can
become cumbersome and error prone.

In alignment with the only-once principle mentioned in
Section II, a typical scenario is the ability to consult relevant
agencies whether a given applicant possesses a criminal record

or has all tax duties in order. We model such external sources
as FTA in Figure 4 (left). The model on the top left represents
an external database that receives a request to check a given tax
number (checkTax) and provides a response certifying whether
tax duties are in order (resTax), while the model on the bottom
left represents an external database that receives a request
to check a person ID (checkCR) and provides a response
certifying whether the person has criminal records (resCR).
Their presence depends on features tx and cr , respectively.

In this scenario, the authority must consult the required
external sources, if available, and wait for their responses
before deciding to grant the license. Figure 4 (right) shows
such an FTA, which is a simplification of automata Processing
from Figure 2. When an application is ready to be assessed
(assess), the authority consults external sources (checkES) if
supported by the service, waits until all responses are ready
(results), and makes a decision. In case the service does not
support consultation of external sources the authority can
directly make a decision.

The complication arise when modeling the interaction be-
tween the new FTA Assess and the external databases. First,

May 27, 2017 10 / 17

Outline

1 Part I
Context and motivation
Modeling families of services with FTA
Verifying properties of families of services with Uppaal

2 Part II
Analyzing FTA
Enriching FTA

May 27, 2017 11 / 17

Analyzing FTA

Queue

Applicant

Authority

Pre-assess

Assess

Credit Card Paypal

submits gets

Payment

incomplete/reject/accept

pays

conf/error

⊻

appeals*

*

**

*

*

May 27, 2017 12 / 17

Analyzing FTA

`0 `1

c ≤ 1

paypp
pp, c := 0

cancelpp
pp

okpp
pp

`1`0

payapp
pp ∨ cc

paypp
pp

paycc
cc

||
(parallel composition)

network of FTA

Feature Timed Automata (FTA)
Disregards modular and compositional aspects of SPL development
Implicit communication points
Lack of variability composition
Lack of reusable common orchestration mechanisms

May 27, 2017 13 / 17

Extending FTA

Interface Featured Timed Automata (IFTA)
Extends FTA with interfaces that restrict they way automata are composed
Multi-action transitions to simplify design

`0 `1

c ≤ 5

paypp
pp, c := 0

cancelpp
pp

okpp
pp

`2

{i, o1}
fi ∧ fo1

{i, o2}
fi ∧ fo2

i?

f i∧
(f o 1
∨

f o 2
)

o 1!
f i∧

f o 1

o 2!
f i∧

f o 2 pay
pp

?
pp can

cel
pp

!

pp

ok
pp

!

pp

fm = (fo1 ∨ fo2)↔ fi

fm = >

?,! denote inputs and outputs interfaces, respectively.
each interface has associated an inferred feature expression.

May 27, 2017 14 / 17

Extending FTA

Interface Featured Timed Automata (IFTA)
Explicit communication points + composition of variability

Extending FTA

Interface Featured Timed Automata (IFTA)
Extends FTA with interfaces that restrict they way automata are composed
Multi-action transitions to simplify design

¸0 ¸1

c Æ 5

paypp
pp, c := 0

cancelpp
pp

okpp
pp

¸2

{i, o1}
fi · fo1

{i, o2}
fi · fo2

i?

f i ·
(f o 1

‚
f o 2

)

o 1!
f i ·

f o 1

o 2!
f i ·

f o 2 pay
pp

?
pp can

cel
pp

!

pp

ok
pp

!

pp

fm = (fo1 ‚ fo2) ¡ fi

fm = €

?,! denote inputs and outputs interfaces, respectively.
each interface has associated an inferred feature expression.

May 27, 2017 14 / 17

⨝
o1 ⟷ paypp

= Router ⨝	PayPal

okpp!
pp
cancelpp!
pp
o2!
fi∧fo2

fi∧(fo1⋁fo2)
i?

fm = fi⟷(fo1⋁fo2))∧(pp ⟷ (fi∧fo1))

May 27, 2017 15 / 17

Implementation

Scala DSL: https://github.com/haslab/ifta
Specification of IFTA
Uppaal
Interactive representation
Dot

May 27, 2017 16 / 17

https://github.com/haslab/ifta

Conclusions

E-Government
Unexplored domain with respect to SPL + Formal methods

FTA
Allows to simplify the modeling and verification of families of timed automata
Can be enriched to reason about variability during composition

IFTA
Multi-action transitions simplify design
Interfaces enables reasoning about variability + visual feedback
Composition takes into account the feature models
Limitations in the implementation

Uppaal doesn’t work very well with sequence of committed states
Size of IFTA composition can growth quickly

Questions?
May 27, 2017 17 / 17

Conclusions

E-Government
Unexplored domain with respect to SPL + Formal methods

FTA
Allows to simplify the modeling and verification of families of timed automata
Can be enriched to reason about variability during composition

IFTA
Multi-action transitions simplify design
Interfaces enables reasoning about variability + visual feedback
Composition takes into account the feature models
Limitations in the implementation

Uppaal doesn’t work very well with sequence of committed states
Size of IFTA composition can growth quickly

Questions?
May 27, 2017 17 / 17

	Part I
	Context and motivation
	Modeling families of services with FTA
	Verifying properties of families of services with Uppaal

	Part II
	Analyzing FTA
	Enriching FTA

