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Service Delivery in E-Government

Challenges

@ Rapid development
@ Service integration

@ Cost reduction

Conformance with laws and regulations
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Service Delivery in E-Government

Challenges

@ Rapid development
@ Service integration
@ Cost reduction

@ Conformance with laws and regulations

Ad-hoc ICT solutions disregarding common functionality and shared processes
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How can we address existing challenges?

Challenges

o Rapid development
@ Service integration Software Product Lines

o Cost reduction
o Conformance with laws and regulations } Formal Methods
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Software Product Line

A set of software systems that share a high number of features while differing on others,
where concrete configurations are derived from a core of common assets in a prescribed
way.
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Software Product Line

A set of software systems that share a high number of features while differing on others,

where concrete configurations are derived from a core of common assets in a prescribed
way.

v

@ A characteristic or behavior of a system that is visible to the user.
@ e.g., pay, cc, pp, ...
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Software Product Line

A set of software systems that share a high number of features while differing on others,
where concrete configurations are derived from a core of common assets in a prescribed

way.
v

@ A characteristic or behavior of a system that is visible to the user.

@ e.g., pay, cc, pp, ...

Feature model

@ Expresses valid feature combinations, i.e., the set of systems that can be derived
from the SPL

o eg., {{pay, cc, pp }, {pay, cc }, {pay, pp }.{}}
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A Modeling formalism for SPL

Feature Timed Automata (FTA)

o Extends Timed Automata with variability

o Enables the verification of the entire SPL by capturing its behavior in a single model
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Uppaal

@ Real-time model checker

o Used by academics and industry
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Modeling variability in Uppaal

ccPavment allFeatures
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ppPayment pp=true pp=true, cc=true allPayments
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Verifying properties in Uppaal

Example properties
@ An application eventually results in accepted, rejected, incomplete, or canceled
@ An application is processed within 121 days

@ An application can not be opened by more than one authority

(]

Property

Liveness ap0.apply --> (ap0.accepted || ap0.incomplete_app || ap0.payment_cancelled || ap0.rejected)
(mergeCancelPay (0) .Lpp || mergeCancelPay (0).Lcc) --> ap0.payment_cancelled

Reachability lcc ——> ! (exists(i:app_id) (CreditCard(i).Ll || mergeCancelPay(i).Lcc || mergePaid(i).Lcc))

Safety A[] ap0O.submitted imply apO.tproc <= 90+31

A[] ap3.appealed imply ap3.tapl <=60
A[] forall(i:app_id) ! (authO.inOpenApps (i) && authl.inOpenApps (i))
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Analyzing FTA
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Analyzing FTA
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Feature Timed Automata (FTA)

Disregards modular and compositional aspects of SPL development

Implicit communication points

Lack of variability composition

@ Lack of reusable common orchestration mechanisms




Extending FTA

Interface Featured Timed Automata (IFTA)

o Extends FTA with interfaces that restrict they way automata are composed

@ Multi-action transitions to simplify design
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@ ?7,! denote inputs and outputs interfaces, respectively.

@ each interface has associated an inferred feature expression.
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Extending FTA

Interface Featured Timed Automata (IFTA)

@ Explicit communication points 4+ composition of variability
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Implementation

Scala DSL: https://github.com/haslab/ifta

o Specification of IFTA
o Uppaal
@ Interactive representation

@ Dot
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https://github.com/haslab/ifta

Conclusions

@ Unexplored domain with respect to SPL + Formal methods

o Allows to simplify the modeling and verification of families of timed automata

@ Can be enriched to reason about variability during composition

IFTA
o Multi-action transitions simplify design
Interfaces enables reasoning about variability + visual feedback

°
o Composition takes into account the feature models
o

Limitations in the implementation
o Uppaal doesn’t work very well with sequence of committed states
o Size of IFTA composition can growth quickly
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Conclusions

@ Unexplored domain with respect to SPL + Formal methods

o Allows to simplify the modeling and verification of families of timed automata

@ Can be enriched to reason about variability during composition

IFTA
o Multi-action transitions simplify design
Interfaces enables reasoning about variability + visual feedback

°
o Composition takes into account the feature models
o

Limitations in the implementation
o Uppaal doesn’t work very well with sequence of committed states
o Size of IFTA composition can growth quickly

Questions?
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