Modeling Families of Public Licensing Services: A Case Study

Guillermina Cledou Luis. Barbosa

HASLab INESCTEC and Universidade do Minho

FormaliSE2017

May 27, 2017

1/17

© Part |

May 27, 2017 2/17

Service Delivery in E-Government

Challenges

@ Rapid development
@ Service integration

@ Cost reduction

Conformance with laws and regulations

May 27, 2017 3/17

Service Delivery in E-Government

Challenges

@ Rapid development
@ Service integration
@ Cost reduction

@ Conformance with laws and regulations

Ad-hoc ICT solutions disregarding common functionality and shared processes

May 27, 2017 3/17

Public Licensing

submits

incomplete/reject/accept

appeals *

Assess

conf/errory

Credit Card | ¥ Paypal

May 27, 2017 4 /17

How can we address existing challenges?

Challenges

o Rapid development
@ Service integration Software Product Lines

o Cost reduction
o Conformance with laws and regulations } Formal Methods

May 27, 2017 5/17

Software Product Line

A set of software systems that share a high number of features while differing on others,
where concrete configurations are derived from a core of common assets in a prescribed
way.

May 27, 2017 6 /17

Software Product Line

A set of software systems that share a high number of features while differing on others,

where concrete configurations are derived from a core of common assets in a prescribed
way.

v

@ A characteristic or behavior of a system that is visible to the user.
@ e.g., pay, cc, pp, ...

May 27, 2017 6 /17

Software Product Line

A set of software systems that share a high number of features while differing on others,
where concrete configurations are derived from a core of common assets in a prescribed

way.
v

@ A characteristic or behavior of a system that is visible to the user.

@ e.g., pay, cc, pp, ...

Feature model

@ Expresses valid feature combinations, i.e., the set of systems that can be derived
from the SPL

o eg., {{pay, cc, pp }, {pay, cc }, {pay, pp }.{}}

May 27, 2017 6 /17

A Modeling formalism for SPL

Feature Timed Automata (FTA)

o Extends Timed Automata with variability

o Enables the verification of the entire SPL by capturing its behavior in a single model

submits

incomplete/reject/accept

appeals *

&ys‘*

conf/errora

Credit Card | ¥ Paypal

May 27, 2017 7/17

Uppaal

@ Real-time model checker

o Used by academics and industry

payment_cancelled incomplete_app

accepted

apply docs_submitted nextapplid]=true
app_paid rejected
payappli oplidl?
© . PPl s not apl
pTC < & eadyl rejectlial”
paying u Submitted
nextapplidl=true,
ubmitt tproc=0
not(pp [T <) && ready(

a - id
nextapplid]=true. reject|
0c=0 tap!

tapl<=32 @F—S2ria

can_appeal tapl=0 appealed

(a) Application
el

submi
1 app_closed enqueue(id)
<1
len>0
tApp
dequeue)

paidappTT
ol & tafi==32 ueue .
e <§) 2 (i) mergePaid

@pI=0

(j) mergeCancelPay

(h) selectPayment
(e) CreditCard (f) Processing

Modeling variability in Uppaal

ccPavment allFeatures

O Y cc=true pp=true, cc=true, apl=true O

ppPayment pp=true pp=true, cc=true allPayments
ppAndApl

pp=true, apl=true

©

ccAndApl

cc=true, apl=true O

baseProduct

May 27, 2017

9/17

Verifying properties in Uppaal

Example properties
@ An application eventually results in accepted, rejected, incomplete, or canceled
@ An application is processed within 121 days

@ An application can not be opened by more than one authority

(]

Property

Liveness ap0.apply --> (ap0.accepted || ap0.incomplete_app || ap0.payment_cancelled || ap0.rejected)
(mergeCancelPay (0) .Lpp || mergeCancelPay (0).Lcc) --> ap0.payment_cancelled

Reachability lcc ——> ! (exists(i:app_id) (CreditCard(i).Ll || mergeCancelPay(i).Lcc || mergePaid(i).Lcc))

Safety A[] ap0O.submitted imply apO.tproc <= 90+31

A[] ap3.appealed imply ap3.tapl <=60
A[] forall(i:app_id) ! (authO.inOpenApps (i) && authl.inOpenApps (i))

© Part II

May 27, 2017 11 /17

Analyzing FTA

submits

incomplete/reject/accept

appeals *

Assess

conf/errory

Credit Card | ¥ Paypal

May 27, 2017 12 /17

Analyzing FTA

paycc cancelpp

cc
payapp
G)
paypp. (parallel composition)

PP

network of FTA

Feature Timed Automata (FTA)

Disregards modular and compositional aspects of SPL development

Implicit communication points

Lack of variability composition

@ Lack of reusable common orchestration mechanisms

Extending FTA

Interface Featured Timed Automata (IFTA)

o Extends FTA with interfaces that restrict they way automata are composed

@ Multi-action transitions to simplify design

E——
N,
N
{i,o1} &
finto | o X
o
K
0o \
a <
N () N kov (?QQ
KoV ‘ oY T
- o
N {i,on} fm=T
W fi A foy "
—

fn = (fo; V fo,) 4 fi

@ ?7,! denote inputs and outputs interfaces, respectively.

@ each interface has associated an inferred feature expression.

May 27, 2017 14 / 17

Extending FTA

Interface Featured Timed Automata (IFTA)

@ Explicit communication points 4+ composition of variability

N
. R
i.o cancelpp K
é A }ot N v‘m* OQQ
0 o
N
Q
Dq a R
2 0 SR <5
RN N %0 0l o paypp < < 9
Ko ' oy ™ N
. o
N {i, 00} fm=T
W fi A foy
—_—
fm = (fo, V fo,) <> i
okpp!
pp
i? R cancelpp!
r >< PayPal
— fin(folvfo2) outer > ayra pp
- 02!
finfo2

fm = fio(folvfo2))A(pp < (fiafol))

Implementation

Scala DSL: https://github.com/haslab/ifta

o Specification of IFTA
o Uppaal
@ Interactive representation

@ Dot

May 27, 2017 16 / 17

https://github.com/haslab/ifta

Conclusions

@ Unexplored domain with respect to SPL + Formal methods

o Allows to simplify the modeling and verification of families of timed automata

@ Can be enriched to reason about variability during composition

IFTA
o Multi-action transitions simplify design
Interfaces enables reasoning about variability + visual feedback

°
o Composition takes into account the feature models
o

Limitations in the implementation
o Uppaal doesn’t work very well with sequence of committed states
o Size of IFTA composition can growth quickly

May 27, 2017 17 / 17

Conclusions

@ Unexplored domain with respect to SPL + Formal methods

o Allows to simplify the modeling and verification of families of timed automata

@ Can be enriched to reason about variability during composition

IFTA
o Multi-action transitions simplify design
Interfaces enables reasoning about variability + visual feedback

°
o Composition takes into account the feature models
o

Limitations in the implementation
o Uppaal doesn’t work very well with sequence of committed states
o Size of IFTA composition can growth quickly

Questions?

	Part I
	Context and motivation
	Modeling families of services with FTA
	Verifying properties of families of services with Uppaal

	Part II
	Analyzing FTA
	Enriching FTA

