
FORMALISE: 6TH INTERNATIONAL CONFERENCE ON FORMAL METHODS IN SOFTWARE ENGINEERING

Formal verification of 
automotive embedded 
software

Vassil Todorov - LRI, Groupe PSA, Université Paris-Saclay 

Frédéric Boulanger - LRI, CentraleSupélec, Université Paris-Saclay 

Safouan Taha - LRI, CentraleSupélec, Université Paris-Saclay

FormaliSE 2018. 2 June 2018. Gothenburg, Sweden



FORMALISE: 6TH INTERNATIONAL CONFERENCE ON FORMAL METHODS IN SOFTWARE ENGINEERING 2

Need for safe advanced driver assistance systems Need for safe advanced driver assistance systems ⇒⇒ Formal methods?Formal methods?



FORMALISE: 6TH INTERNATIONAL CONFERENCE ON FORMAL METHODS IN SOFTWARE ENGINEERING

� Need for new software development process integrating formal methods

� 1983: Balzer* proposed for the first time such a process placing the formal methods in 
the heart of the development (link between requirements, prototype, implementation)

� 2018: there is still no standard process integrating formal methods: each company needs 
to create it

� Need to apply formal methods on automotive use cases to
• identify the potential perimeter of their application

• identify the impacts and difficulties to anticipate

• verify which method could be integrated best in which part of the process

Formal methods and software development process

3

*Balzer, R., Jr. T. E. Cheatham, and C. Green. “Software Technology in the 1990’s: Using a New Paradigm.” Computer 16, no. 11 (November 1983): 39–45. doi:10.1109/MC.1983.1654237.



FORMALISE: 6TH INTERNATIONAL CONFERENCE ON FORMAL METHODS IN SOFTWARE ENGINEERING

Panorama of the formal verification tools

4

Automatic

Interactive

Basic safety Total correctness

Interactive provers

106 LOC

102 LOC

Model-checkers

Static analyzers

Deductive provers

Panorama proposed by Xavier Leroy, INRIA



FORMALISE: 6TH INTERNATIONAL CONFERENCE ON FORMAL METHODS IN SOFTWARE ENGINEERING

� Context
• AUTOSAR application software, 300 K lines of C code

• Sound static analyzers were known to produce a big amount of false positives

• People using model-based design think there is no need to analyze the code because it is generated 
automatically and is thus correct

� Experiments
• MathWorks Polyspace Code Prover R2016b

• AbsInt Astrée 17.04i

� Results
• Reasonable number of alarms that could be analyzed by the engineers

• Not the same number of alarms for the two tools although they are sound

• Model-based design can produce runtime errors difficult/impossible to find by testing

• ISO 26262 (v2018) introduces abstract interpretation

Abstract interpretation

5

typedef unsigned char u8;
void main (void)
{

u8 a = 1;
u8 b = ~a;

}

What is a real bug?



FORMALISE: 6TH INTERNATIONAL CONFERENCE ON FORMAL METHODS IN SOFTWARE ENGINEERING

� Context
• Cruise Controller function allocated to body controller unit

• 110 pages of textual requirements

� Experiments
• Model all textual requirements in SCADE (formally defined language)

• Transform the SCADE model in Lustre (via XSLT)

• Compare the native Prover plugin with different Lustre model checkers (JKind, Kind2, GaTEL)

• Prove the validity of the safety requirements about the Cruise controller deactivation

� Example of property to prove

� Results
• A bug previously found was confirmed only in few seconds

• Certain properties like the previous one are not inductive and we need to explore all the states of the model ⇒
Problem : if we increase the time from 2s to 2min none of the model checkers is able to prove it within 24h

• PDR/IC3* is generating invariants starting from the property but in our case we needed to find an inductive 
relation between the variables of the property and the model. How can we find this relation automatically?

• We need a better invariant generator and are working on its improvement

SAT/SMT-based model checking

6

“In order to respect the safety objectives in the case the brake pedal sensor is not working, 2 
seconds of deceleration under 144 without pressing the brake pedal shall turn off the function.”

*Bradley, Aaron R., and Zohar Manna. “Property-Directed Incremental Invariant Generation.” Formal Aspects of Computing 20, no. 4 (2008): 379–405



FORMALISE: 6TH INTERNATIONAL CONFERENCE ON FORMAL METHODS IN SOFTWARE ENGINEERING

� Context
• SQRT function using linear integer interpolation over 40 values

� Experiments
• Annotate the code using ACSL specification language

• Use Frama-C to prove the correctness for a given precision

• Develop the same function in Ada

• Use SPARK to prove the correctness for a given precision

� Results
• SPARK succeeded with 40 values at once using a little hint: bit vectors are easy to handle by 

the SMT solvers

• SPARK can return a counterexample when a contract fails

• Frama-C proved the correctness for 8 values but when extending the table to 40 values it didn’t 
scale

• After submitting the problem to the developers of Frama-C we got a new version integrating the 
Colibri SMT solver which worked. The reason was that Colibri worked with modular arithmetic 
unlike the others

Deductive proof

7



FORMALISE: 6TH INTERNATIONAL CONFERENCE ON FORMAL METHODS IN SOFTWARE ENGINEERING

� Formal methods
• Our experiments showed that formal methods definitely bring more confidence in the software 

verification process finding bugs earlier and faster than testing

• They also help thinking about and getting a better specification

• They can be introduced incrementally

� Formal tools
• Some are mature enough to be used in an industrial context

• Tools are complex and may contain bugs ⇒ use of more than one tool?

• Problem: Using mathematical numbers (reals and infinite integers) while we want to prove 
programs using floating point numbers and bounded integers

• Challenges: scalability, floating point numbers, nonlinear arithmetic, timers, counters, lookup 
tables

� Future work
• Can we get 0 false alarm using abstract interpretation tools and what is the prerequisite?

• Can we get a better confidence in the software development using a formally defined language 
for MBD?

• Can we get better invariant generation using a different methodology (e.g. functionally typing the 
variables)?

Conclusion and future work

8


