

Domain-specific Design of Patient Classification in Cancer-related Cachexia Research

Tiziana Margaria University of Limerick and Lero Limerick, Ireland Alexander Wickert University of Potsdam Potsdam, Germany Anna-Lena Lamprecht Utrecht University Utrecht, The Netherlands

Motivation

Cachexia is a **complex wasting syndrome** associated with a marked detrimental effect upon life quality and survival in patients with **cancer**, **chronic obstructive pulmonary disease** (COPD), **chronic heart failure**, **AIDS**, and **chronic kidney disease**, among other conditions. Its prevalence is of around 5 to 15% in cardiac patients at end stage, rising up to 30%, in COPD and chronic kidney disease patients, and to **80% in patients with advanced cancer**. Cachexia symptoms include **pronounced weight loss**, due to both lean and fat mass wasting: **anorexia**, **malabsorption**, **nausea**, **asthenia**, **neuroendocrine changes**, **immune system function impairment**, **and disruption of energy metabolism**.

Despite its unquestionable relevance to the poorer outcome of treatment in disease and its high prevalence among patients, the syndrome is **still underdiagnosed and seldom treated**. Part of the difficulty in treating cachexia relies on the fact that, in the clinical setting, the syndrome is recognised solely in its **most advanced stages**, when therapy available to the present day is not able to fully reverse its symptoms.

Motivation

Therefore, scientists and clinicians should focus on **identifying early changes**, as to intervene in a precocious manner. Taken together, the issue provides insights on the importance of **detecting early signs of inflammatory changes** in patients and examines the **mechanisms that act in concert**, inducing cachexia symptoms.

External Groups

Table 1. Remote associated groups and their geographical location and affiliation.

Group	Institute/Country	\sim
Alessandro Laviano,	Department of Clinical Medicine	
Maurizio Muscaritoli	Sapienza University of Rome,	
	Rome, Italy.	
Giorgio Trinchieri,	Center for Cancer Research	
Romina Goldzmid	National Cancer Institute,	
	Bethesda, Maryland USA	
Josep M. Argilés,	Cancer Research Group,	
Silvia Busquets	Institut de Biomedicina, Univ. Barcelona	
	Barcelona, Spain	Application Experts
Nicolaas Deutz	Department of Health & Kinesiology	
	Texas A&M University	
	Bryan, Texas, USA	=
Stephen Farmer	Department of Biochemistry	
	Boston University School of Medicine	
	Boston, MA, USA	
Gerhard Paul Püschel	Institute of Nutritional Science	
	University of Potsdam	
	Potsdam, Germany	—
Tiziana Margaria	Institute of Informatics	
	University of Potsdam	ഗ്ര
	Potsdam, Germany	
Barry D. Floyd	California State Polytechnic University	
	San Luis Obispo, CA, USA	

¢lero

Margaria, Wickert, Lamprecht

Technical Experts

Main Challenge

Life sciences researchers are seldom IT professionals

- they need to work together efficiently
- with the data definition and management techniques that complex and evolving experimental settings require

Definition of Cachexia

🗢 Lero

Cachexia: A new definition

William J. Evans^{*}, John E. Morley^a, Josep Argilés^a, Connie Bales^a, Vickie Baracos^a, Denis Guttridge^a, Aminah Jatoi^a, Kamyar Kalantar-Zadeh^a, Herbert Lochs^a, Giovanni Mantovani^a, Daniel Marks^a, William E. Mitch^a, Maurizio Muscaritoli^a, Armine Najand^a, Piotr Ponikowski^a, Filippo Rossi Fanelli^a, Morrie Schambelan^a, Annemie Schols^a, Michael Schuster^a, David Thomas^a, Robert Wolfe^a, Stefan D. Anker^a

What data do we have?

- Questionnaire scores
- Anthropometric data
- Body composition images
- Brain images
- Histological images
- Immunodetection images
- Biochemical parameters in plasma
- Endocrine parameters in plasma
- Inflammatory parameters in plasma
- Biochemical parameters in tissues/organs
- Inflammatory parameters in tissues/organs
- Cell sorting and phenotyping spectra
- Chromatographic spectra
- Molecular parameters in cells
- Microarray analysis
- Gene sequencing
- > Physiological parameters associated with the effect of exercise

How to work with all these information?

- > PDF Files
- Excel spreadsheets
- Everything is done manually

Interdisciplinary: Bio-chem lab Nutrition science Immunology Sports/rehab Oncology

Surgery Gastroenterology Psychology (Computer Science) (ED)

Managing Processes

By Rodolfo G. Camargo, USP 8

Managing Processes

Stakeholder Requirements:

- semiotically intuitive, graphical approach
- > a framework that:
 - is able to manage complexity and change
 - helps to efficiently produce more reliable results
 - appears **simple** and **intuitive** to its users

The Patient Classification Spreadsheet

	А	В	С	D	E	G					
	PATIEN	PATIENT'S INFORMATION			FIRST CRITERI	<u>ON - WEIG</u>	HT LOSS				
2	Identification	Gender	Age (Years)		Weight variation	BMI (kg/m ²)	Result				
	165A	Male	51		-10%	28,88	IN				
	Height (m)	Prev. weight (kg)	Current weight (kg)		Treatment	lernia					
5	1,59	81	73								
	SECOND CRITE	SECOND CRITERION - WEIGHT STRENGTH				THIRD CRITERION - FATIGUE					
	Method	Score	Result		Method	Score	Result				
	Questionnaire (QLC-C30)	53,33333333			Questionnaire (QLC-C30)	33,33					
10	Answer 1	1			Answer 10	4	IN				
11	Answer 2	4	OUT		Answer 12	3	IIN				
12	Answer 3	2	001		Answer 18	2					
13	Answer 4	3									
14	Answer 5	2									
15											
16	FOURTH CRITERION - ANOREXIA FIFTH CRITERION - FAT FREE					MASS INDEX					
17	Method	Score	Result	Method		Score	Result				
18	Questionnaire (QLC-C30)	100,00	ОЛТ		DEXA Scan	6,09					
19	Answer 13	1	001		Lean mass (kg)	15,4	IN				
20											
21	21										
22	SIXTH CRITERION	- BIOCHEMICA	<u>L PARAMETERS</u>		GROUP CLASSIFIC	CATION	BARCODE				
23	Parameters	Concentration	Result								
24	C-Reactive protein (mg/l)	6,10		CACHEXIA WITHOUT CANCER							
25	IL-6 (pg/ml)	5,34	IN								
26	Anemia - Hb (g/dl)	12,30		LEVEL OF EXCLU		CRITERIA	TORCHCERNONE				
27	Albumin (g/dl)	4,89				NONE					
28 Adapted from Evans, 2008						NUNE					

Example: Excel Formula (Cell B9)

=WENN(UND(A9="Questionnaire (QLC-C30)";B10<>"";B11<>""; B12<>"";B13<>"";B14<>"");(1-(MITTELWERT(B10:B14)-1)/3)*100; WENN(UND(A9="HandgripTest";B3="Male";B10<44;B10<>""); "POOR"; WENN(UND(A9="HandgripTest";B3="Male";B10>44; B10<>""); "GOOD"; WENN(UND (A9="HandgripTest"; B3="Female";B10<23;B10<>""); "POOR"; WENN(UND (A9="HandgripTest"; B3="Female";B10<23;B10<>""); "POOR"; WENN(UND (A9="HandgripTest"; B3="Female";B10>22;B10<>""); "POOR"; "GOOD"; "---")))))

- for regular use in large-scale research projects it has significant drawbacks:
 - for every patient the data has to be entered manually in a single spreadsheet
 → also the result has to be transferred manually
 - Excel formulas are complex and not easily understandable
 - maintenance, modifications, and extensions are difficult and error-prone
 - no statistics on the data possible
 - no unified database

The Patient Classification Spreadsheet

- complex patient classification determines which individuals belong to the different patient and control groups
- it is a multifaceted evaluation of a number of interdisciplinary criteria

We

- organized and simplified the patient classification process,
- made it easily accessible and shareable worldwide via a web application
- the integrated framework collects the data of patients in a central repository (easy to access and back up)

Approach

IDE for **co-design** and **co-evolution** of data and process models

- Data: Dynamic Web Application (DyWA),
- Behaviour: Java Application Building Center 4 (jABC4) modeling framework

Result:

easily executable domain-specific processes

Co-Development with DyWA and jABC4

Contract Con

Margaria, Wickert, Lamprecht 15

🗘 Lero

DyWA: Data Type Definition

- DSL design approach = start by fixing the vocabulary of the domain
- definition of a set of domain-relevant "things" with their respective types
- DyWA provides domain-independent Java types (e.g. String, Integer) as initial type collection
- Any self-modeled domain specific type (e.g. Weight) becomes directly available and can be used as a field or attribute of complex data types
- CRUD operations = Create, Read, Update, Delete are automatically generated for every defined type and field by the DyWA

DyWA: Data Type Definition (Margaret Hamilton: who you are)

Dy wa				Types	Objects	Processes	Administration	Plugins 👻
Types								
Available Types	Add	ent_Information	I		(start development of	del the d	lomain
Filter		Description Inherits from						
Answer_enum_values		Abstract	false					
Gender_enum_values		In Use	true					
Height_enum_values	Wat	Used as	Patient_Information	dieplay				
Height_type		Fields		uispiay			In	
Identification			identification		Identificat	ion	true identification	on
Length_enum_values			gender		Gender_e	enum_values	true gender	
Length_type			age		Integer n	umber	true age	
Patient Information			height		Height_ty	ре	true height	
			weight_previous		Weight_ty	/pe	true weight_pre	evious
Patient_Questionary			:		:		:	

¢ Lero

DyWA: Data Type Definition

¢Lero

///Dywa	Edit typ	be: Patient_Information		Types	Ohier	-to	Droce	×
Types	Meta							
		Name	Patient_Information					*
Available Types	Fields	of type						
Filter	1.	Identification	identification	1	Ŧ	С	×	*
	2.	Gender_enum_values	gender	1	ŧ	С	×	*
Answer_enum_values	3.	Integer number	age	+	Ŧ	С	×	*
Gender_enum_values	4.	Height_type	height	1	ŧ	C	×	*
Height_type	5.	Weight_type	weight_previous	1	ŧ	C	×	*
Identification	6.	Weight_type	weight_current	1	ŧ	C	×	•
	15.	Floating-point number	albumin_in_g_per_dl	1	ŧ	С	×	*
		Text						+

UML Class Diagram of the Domain Model

Co Lero

Taxonomy of SIBs: the "Microservices" (Margaret Hamilton: what you do)

CRUD SIBs automatically generated

C Lero

Process Modeling with jABC4

Contract Con

Margaria, Wickert, Lamprecht 22

Process Models: Kripke Transition System (KTS)

Let *AP* be a set of atomic propositions. A **Kripke Transition System** over *AP* is a 4-tuple K=(S,Act Trans,I) with: S a set of states Act a set of actions $Trans \subseteq S \times Act \times S$ a transition relation $I: S \rightarrow 2^{AP}$ an interpretation function

Process Model: TransformWeight2kg

Contract Con

Path through Graph Level Hierarchy

¢ Lero

Executable Processes deployed to DyWA

🗘 Lero

Margaria, Wickert, Lamprecht

Outcome: Incremental Modeling of Data and Processes

Group	Institute/Country	\sim
Alessandro Laviano,	Department of Clinical Medicine	
Maurizio Muscaritoli	Sapienza University of Rome,	
	Rome, Italy.	
Giorgio Trinchieri,	Center for Cancer Research	
Romina Goldzmid	National Cancer Institute,	
	Bethesda, Maryland USA	
Josep M. Argilés,	Cancer Research Group,	
Silvia Busquets	Institut de Biomedicina, Univ. Barcelona 🔹	
	Barcelona, Spain	Application Experts
Nicolaas Deutz	Department of Health & Kinesiology	
	Texas A&M University	
	Bryan, Texas, USA	
Stephen Farmer	Department of Biochemistry	
	Boston University School of Medicine	
	Boston, MA, USA	
Gerhard Paul Püschel	Institute of Nutritional Science	
	University of Potsdam	
	Potsdam, Germany	•
Tiziana Margaria	Institute of Informatics	
	University of Potsdam	്റ്
	Potsdam, Germany	
Barry D. Floyd	California State Polytechnic University	
	San Luis Obispo, CA, USA	

Technical Experts

Outcome: Incremental Modeling of Data and Processes

- patient classification process is now fully automated as a workflow
 - modeled with jABC4, and
 - integrated into a database provided by the DyWA
- jABC4 = model-driven environment for designing the processes
- DyWA = meta-schema based data definition and management tool with standard relational database
- their interplay provides an integrated environment for data and process modeling along the XMDD paradigm
- supports a Service-oriented Continuous Engineering approach to the formalization and definition of a domainspecific language and process landscape

eXtreme Model Driven Design

http://cinco.scce.info/

http://hope.scce.info

http://dime.scce.info/

Limerick's vision

Thank you! Questions?

Contact: tiziana.margaria@lero.ie

Conclusion

- integrated data and process modeling environment:
 - data collection,
 - data transformation,
 - automation,
 - reproducibility of results
- many processes have the potential to be reused by other health care applications, or even in other domains

Conclusion

- adaptations to changing experimental setups are still possible
- processes are immediately executable and remain customizable
- this environment provides a significant step towards the large-scale applicability of a formal model-based and methods-supported, model-driven, generative IDE for scientists
- the IDE ensures that the modeling of domain-specific <u>data</u> <u>types</u> and <u>processes</u> using these components happens in one coherent system at a user-accessible level
- result: immediate availability, consistency and reproducibility of the outcomes, and the coherence and evolvability of the entire collection of data schema and processes

Ongoing Work

- access to data and processes in the web application should be based on a proper roles and rights management (e.g. DIME)
- provenance tracking and auditing of all the data collected and accessed
 - to know who did what when with which permissions, and
 - to maintain truly complete records of experimental results

