Formal Verification of an
Autonomous Wheel Loader by
Model Checking

Rong Gu, Raluca Marinescu,
Cristina Seceleanu, Kristina Lundqvist

6TH INTERNATIONAL CONFERENCE ON FORMAL METHODS IN
SOFTWARE ENGINEERING
FormaliSE June, 2018

Use case: Autonomous Wheel Loader _

- Autonomous Wheel Loader (AWL)

(a) A heavy construction vehicle

(b) Transports material, loads and unloads at crushers

(c¢) No human operator on-board

(d) Works under any condition, e.g., dusty, raining,
foggy, and dark envir

(e) Existing prototype ha intelligence (e.g. collision
avoidance) and no dependability guarantees

(f) Path planning and replanning for autonomous path

following and collision avoidance

An AWL must calculate the initial path before it
starts to move and avoid all kinds of obstacles
dynamically as it m
Follow the planned
React to errors in t
correctly .

el o A . :
LR i i

{ Autonomous Wheel Loader
R ——

. E! Dependable Platforms for Autonomous Systems and Control

e The architecture of the

Data Bus

' Data Bus
Data Bus

Use case: Autonomous Wheel Loader

b
AWL'’s control system ;—Data Bus
Vision ——FEthernet—» Control Ethernet— Executlon
Unit Unit Unit
AOUT/DOUT
« Task allocation in the Control Systerm
control system | }
Vision Unit Control Unit EXBCll‘tIOIl
Unit
= 1 ! 1
Do Read Mai Calculate Recelve Do Calculate
Obstacle Position Talllcl Path Command | | Command || Position
Task Task as Task Task Task Task
|
Execution
Function
|
[[]
Get Path Valid Send
) Path Command
Function . .
Function Function

' E Dependable Platforms for Autonomous Systems and Control

| Control system

| Environment

ipole flow |

A* D
algorithm

—(_Map)

Obstacles
(static& dynamic)

UPPAAL TA

B e

Model

(Requirements)

Checker

« UPPAAL TA: UPPAAL Timed Automata
« TCTL: Timed Computation Tree Logic

. E Dependable Platforms for Autonomous Systems and Control

Preliminaries: Path-planning algorithm — A* algorithm

« A widely used algorithm for path finding and graph traversal.

« A* algorithm works in a grid.

« 2-dimensional array (int map[N][N]), 1: walkable, 0:”not walkable”.

« A* algorithm is an extension of Dijkstra’s algorthim, finding the
shortest path from A to B.

. _ I

Figure 2. A* algorithm works in grid.

' E Dependable Platforms for Autonomous Systems and Control

Preliminaries: Path-planning algorithm — A* algorithm

- F=G+H,
* G: cost from start to current cell
« H: estimated cost from current cell to destination
« Manhattan Distance: The simple sum of the horizontal and vertical
distance ignoring the “unreachable” cells.

Figure 3. A* algorithm finds the shortest path.

. E Dependable Platforms for Autonomous Systems and Control

D:

Preliminaries: Collision-avoidance algorithm

Dipole Flow Field: Static Flow Field — avoid static obstacles

(A) (B)

Figure 6. The representation of the static flow field (unity vectors), (A) the initial path with the configured static
attractive field, (B) the static flow field with added repulsive force to the obstacles [1].

[1] LanAnh Trinh, Mikael Ekstrém, and Baran Clriikld. 2017. Dipole Flow Field for Dependable
Path Planning of Multiple Agents. In IEEE/RSJ International Conference on Intelligent Robots .
and Systemes.

Dependable Platforms for Autonomous Systems and Control

Preliminaries: Collision-avoidance algorithm

[[]] . .] .

Dipole Flow Field: Dynamic Dipole Field — avoid dynamic obstacles
INARARARARANAAAR NI B! T T8 LA A Rty ———
RN a a3 8 Y L it
 E bj 1 dtob R R R 8 §4950202002000 0~ ~~sny
very object 1s assumed to be a e AN W LG Attt ety
M\\\\\\\\\tttkktkk ;’;5511//—'~'-——~~\s\\\\\1
. . . Itsiateindniiinin AR A R AL 3 ,///,,pv——\\\\\\\\\\\
source of magnetic dipole field. A N 2 L B e T P Y
) . e T A 3 A Attt ST LR
» The magnitude of the magnetic s NI 1 111 At rr SR R 2R
. . et o f;;::::::::::t RRRRREE
moment is proportional to the e st e PPt R T
. /J/Jz//»»—-—-—--—.—-—-mwlt:\\ ;;:.’Q\\\ \‘ \ \l ‘l : 'I l' ‘l |' ; ; ; [
/////}f//;f//aa—-—-.—.—-_v‘\\\ /_,.:\\ SAvy 2
velocity. e ORI
) TWO mOV‘in Ob‘ec‘ts I'e ulse each /IIIIIIIIIIIIIIIIIIIIl,;’ll\,\ ——tt AP, I?
g J p R R R RRRERE N EE N E RN SN R et
AT RN S SN ecanmr s

N~ o~ g
other when they are close enough. j/iiifiiiiiiiiii sy pinemommnnznnnizzzs
i lll\\\\\\\\\\\\\~~::::§t \\Q;'::::::::::_......
||\\\\\\\\\\\\\\\\-._,,,//5 \Q\\\\\\\““—O—o—-—.aa
- - R I R B B O N B
m = k B D R ettt AL B0 PR rdedede i
— mv \\\\\\\\\\\\~\-~.._..,.,,/,5§ i\kt\\\\\\\\~~‘m
R e A L S
AR T NN S
k BB R R iy
d - - - - - - - - - R NN AN
Fj=—|(mo-r)xXmj+(m;-r)Xmo+ (mo-m;)Xr|— [HINNNNNEs
ds TEILLAANNN NN
TA AL ANANNNNNSNSNS
PEEAINNNNNNY
5-(mo-r)-(mj-r) IR
0 1 = %\\\\\\\\\\\\
rl, LALANAANNNNY

~a moving object!,

[1] LanAnh Trinh, Mikael Ekstrém, and Baran Curiikli. 2017. Dipole Flow Field for Dependable Path Planning of Multiple Agents. In IEEE/RSJ International Conference on Intelligent Robots
and Systems. http://www.es.mdh.se/publications/ 4883- 8

. Dependable Platforms for Autonomous Systems and Control

Preliminaries: Timed automata and UPPAAL

« Timed automata (TA): finite state machines with real-valued clocks
« UPPAAL: A TA-based toolbox for validation and verification of real-
time systems.

(B)

A)

Figure 8. A lamp example of a network of UPPAAL TA

' E Dependable Platforms for Autonomous Systems and Control

Preliminaries: Timed Computation Tree Logic

Formalize the natural-language requirements to (Timed) Computation
Tree Logic (TCTL) queries, which are in the form:

E0 p There exists a path where p eventually Allp E<>p P>a
holds

The shortest/fastest path to the state

AO p For all paths, p always holds (a)

AQ p For all paths, p will eventually hold

p 2..:q Forall paths, if p holds then q will
eventually hold within T time units.

N 1

-~

Figure 9: Different types of TCTL queries and
their expressions in UPPAAL

10

' E Dependable Platforms for Autonomous Systems and Control

Abstraction of map and movement

o Map Abstraction

fi :Ri — Zi f(x,y) = (zx, zy)

o = N w > w)] ~

€ € € €
X—-SzxSx+o,andy— - <zy <y+ -
2 2 2 2
1 2 3 4 5 6 7
2-D Cartesian grid Map Equation

e Movements Abstraction

P = (Zxoﬁ Zy())(le ’ Zyl) o (an_1 ’ Zyn_1)(an ’ Zyn)
—)
A
Zx; = Zx,_, £ U, where x; > 1
& Zy; = Zy;_, £ 0, wherey; > 1
Movements of AWL and moving obstacles Threerhypes dldeatisiden movements

E 11
' Dependable Platforms for Autonomous Systems and Control

v A
| ¥ 4

Read

_

Write

lerror is true]

lerror is false]

A* Algorithm () ()
Report Success Report Error

@

.

Figure: Model th

-~ »Formal model of tasks and algorithms

Dipole Flow Field
Algorithm

ns in TA

. E Dependable Platforms for Autonomous Systems and Control

12

v A
| ¥ 4

D:

-~ »Mapping activity diagrams to TA

not safe
(Agltg)ljﬁim) Check Surrounding ﬁ ACthlty D lagrams
(JrSTEM HRRCR
Execute Turn to Safety Mode

(Invoke other functions) error

t<=taskDelay

t<=w _|n | petiod

(A) TA of Main Task (B) TA of Execution Function
Timed Automata (TA) in UPPAAL

1
Dependable Platforms for Autonomous Systems and Control 3

< »Overview of the system model

Control System

Execution
Vision Unit Contlol Umt
Unit

iiﬁi---
o]|

Figure FiguneHA: {bath dtboant dnriatihes;arifrofeysheming obstacle

14

. E Dependable Platforms for Autonomous Systems and Control

Modeling the path-planning and collision-avoidance algorithms

Dynamic Obstacle

tatic Obstacle

5 6 7 8 9 10 11 12 13 14 15

A* Algorithm

void AStart ()

{
Point ts, ps;

int i, j;
bool findEnd=false;

insert (open, start);

while ((open.listlLen != 0) && (!findEnd))

C-code functions

Dipole Flow Field
Algorithm

brake_udp:=brakeOption, path_rcques
path_request_udp:=true,
setp_trigger:=setp threshold

t==period& & h
ISYSTEM\ERROR&& P2t request

h_Tequest_mutex

calep_trigger<=threshold& & calculftellorces()

t<=period
Calculation

brake_udp:=truc,
udp:=falsc,

t<-pcr|od&&
c<=cxecutionTime

TA

Dependable Platforms for Autonomous Systems and Control

15

Model for data communication

‘ Start

Data communication between
tasks: global variables,
clocks/channels:

!global_position& & !global
w_taskl_trigger== position
w_taskl_thyeshold task[0]?
initializd

a) Crucial signals: channels,
e.g., freeze, fail, etc.

w_taskl_trigger<=
w_taskl_threshold

global_p#sition

b) Asynchronous signals: clocks,
e.g., w_taski1_trigger <=
w_task1 threshold.

t<=w_taskl period&&
& ¢<=executionTime

Figure 13: a TA of a task waiting for data “wheel loader’s position” from another task

E 16
. Dependable Platforms for Autonomous Systems and Control

Formal Verification - Initial Path Computation

Initial Path Computation: during initialization, an AWL
must compute an initial path to the destination, which ought
to avoid all the static obstacles identified in the quarry

Query

Q1.0: E<> mainTask Wait

Q1.1: A<> mainTask Wait imply lenOfPathStack > 0
T Q1.2: L<> currentPosition —- pile and destination —- crusher |
Q1.3: (currentPosition == pile and destination == crusher) —> currentPosition == crusher
Q1.4: E<> currentPosition == crusher and destination == pile

1.5: (currentPosition == crusher and destination == pile) —> currentPosition == pile
0Q1.6: A[] forall(i:int[0,9]) currentPosition != staticObstacle|i]

17

' E Dependable Platforms for Autonomous Systems and Control

Formal Verification - Obstacle Avoidance

Obstacle Avoidance: AWLs must avoid static and dynamic
objects around them in due time before returning to the

initial path

Q2.0: A[] currentPosition != currentObstacle

Q1.3: (currentPosition == pile and destination == crusher) —> currentPosition == crusher

Q1.4: E<> currentPosition == crusher and destination == pile

01.5: (currentPosition == crusher and destination == pile) —> currentPosition == pile

18

. E! Dependable Platforms for Autonomous Systems and Control

Formal Verification — Reaction to Errors

Mode Switch Mode A: if the information of obstacles
cannot be reported to the control unit, which is very

dangerous, AWL must freeze its motion within 20 time units.

Q3.1: E<> errorStart == true
03.2: error_start==true —> (SYSTEM_ERROR==true and reaction_time<=20)

g

' E! Dependable Platforms for Autonomous Systems and Control

19

Formal Verification - End-to-end Deadline

End-to-end Deadline: to guarantee a certain productivity,
AWLs must finish one cruise within 2200 time units.

04.0: (currentPositionzzpile and destination==crusher)|-> |(currentPosition==pile and

destination==pile and gClock <= 2200)

20
. E! Dependable Platforms for Autonomous Systems and Control

Formal Verification - results

Table 1: Verification queries and results

T
Requirement Query ’ Result |jStates explored Time
01.0: E<> mainTask Wait Pass |y 2 110 ms
Q1.1: A<> mainTask Wait imply lenOfPathStack > 0 Pass |, 8780 484 ms
Q1.2: E<> currentPosition == pile and destination == crusher Pass : 1 0 ms
Initial path computation | Q1.3: (currentPosition == pile and destination == crusher) —> currentPosition == crusher I| Pass |* 14191 1125 ms
Q1.4: E<> currentPosition == crusher and destination == pile || Pass |l 2339 297 ms
Q1.5: (currentPosition == crusher and destination == pile) —> currentPosition == pile Pass |l 14204 782 ms
Q1.6: A[] forall(i:int[0,9]) currentPosition != staticObstacle[i] Pass || 8780 485 ms
Q2.0: A[] currentPosition != currentObstacle Pass | 125941 6297 ms
. Q1.3: (currentPosition == pile and destination == crusher) —> currentPosition == crusher | Pass 227646 13969 ms
Obstacle avoidance — — - |
Q1.4: E<> currentPosition == crusher and destination == pile Pass | 2678 375 ms
Q1.5: (currentPosition == crusher and destination == pile) —> currentPosition == pile Pass : 192406 10656 ms
Mode switch: error A Q3.1: E<> errorStart == true Il Pass [I 30 234 ms
Q3.2: error_start==true —> (SYSTEM_ERROR==true and reaction_time<=20) || Pass |l 91 250 ms
Mode switch: error B Q3.1: E<> errorStart == true Pass |l 29 234 ms
Q3.2: error_start==true —> (SYSTEM_ERROR==true and reaction_time<=15) / o Pass || 320 266 ms
End-to-end deadline Q4.0: (currentPosition==pile and destination==crusher) —> (Currenﬂ’% =:%'~31 Pass | 590326 36641 ms
destination==pile and gClock <= 2200) ??‘ : I I\

) —
36641 ms

I
|
\

21
. Dependable Platforms for Autonomous Systems and Control

What else did we observe?

Crusher
iy

X

1 |

Stone '}3{16

e ——
KR KX
i3

R

0 1 2

' E Dependable Platforms for Autonomous Systems and Control

13

14

15

22

Conclusion

We have created a formal model of an industrial prototype
of an AWL and its working environment

e a discrete map and a TA for a moving obstacle

e 11 TA for algorithms and tasks in the control system

e encoded computations in the C-code functions of TA

We have verified the system model and the algorithms
against AWL’s requirements

e functional requirements

e timing requirements

Counter-examples found by exhaustive verification are

helpful for future optimization of system design and
algorithms.

. E! Dependable Platforms for Autonomous Systems and Control

23

Lessons learned and future work

Lack of floating-point value support in UPPAAL

e More accurate path-planning and collision-avoidance
algorithms need real numbers

e UPPAAL model only supports integers

Limitations of Dipole Flow Field algorithm applied in
collision avoidance

Hierarchical verification model/method is needed for
more complex system model

e Discrete model and exhaustive verification: decision-
making component

e Continuous model and statistical verification: real-valued
map and dynamics, any-angle path, etc.

. E! Dependable Platforms for Autonomous Systems and Control

24

Thank you for
listening!

Rong Gu (rong.gu@mdh.se)

| V4

JALARDALEN UNIVERSITY
SWEDEN

< »Mapping activity diagrams to TA

not safe

Initializ l
(A* al];)ritim) Check Surrounding Conﬁgure

Execute Turn to Safety Mode
(Invoke other functions) error

t<=w_mein_period

(A) TA of Main Task (B) TA of Execution Function

Timed Automata (TA) in UPPAAL

E 26
. Dependable Platforms for Autonomous Systems and Control

