Self-Adaptive Automata

Aimee Borda (Lero & Trinity College Dublin)

Vasileios Koutavas (Lero & Trinity College Dublin)

Self-Adaptive Systems

- Systems with the "ability to adapt at run-time to changing user needs, system intrusions or faults, changing operational environment, and resource variability"
- "Has been proposed as a means to cope with the **complexity** of todays softwareintensive systems"

(Dagstuhl Seminar 10431)

Search Operation by Unmanned Vehicles

Requirements:

- 1. No Collisions
- 2. Vehicles stay in search area
- 3. Eventually search the whole area

Search Operation by SA Unmanned Vehicles

Time-Triggered Adaptation

Every 3 time units

Time-Triggered Adaptation

Every 10 time units

Coordinator (collision avoidance,...)

T0

T1

T2

Т3

T4

Event-Triggered Adaptation

Vehicles are dangerously close to each other

Adaptation Pattern is crucial!

Execution points where adaptation is triggered

- Time-based, event-based, history-based...
- Important (for correctness)
- Necessary (for implementation)

<u>Goal</u>: Enable Experimentation and Verification of Adaptation Patterns

- Model at a **high-level** of abstraction
- Modularity: localise adaptation pattern
- Leverage existing verification technology

Our Model: Self-Adaptive Automata (SAA)

SAA $\stackrel{\text{def}}{=} \langle Q, \Sigma, \Delta, q_0, \delta_0, \Pi \rangle$

- *Q*: Set of States
- Σ : Set of Events
- Δ : Set of Transition Functions
- q_0 : Initial State
- δ_0 : Initial Transition Function $Q \times \Sigma \rightarrow Q$
- $\Pi: \qquad \text{Adaptation Function} \\ Q \rightarrow Q \times \Delta$

Model: Self-Adaptive Automata

SAA $\stackrel{\text{def}}{=} \langle Q, \Sigma, \Delta, q_0, \delta_0, \Pi \rangle$

- Q: Set of States
- Σ : Set of Events
- Δ : Set of Transition Functions
- q_0 : Initial State
- δ_0 : Initial Transition Function $Q \times \Sigma \rightarrow Q$
- $\Pi: \qquad \text{Adaptation Function} \\ Q \rightharpoonup Q \times \Delta$

Operational semantics

$$\langle q, \delta \rangle \xrightarrow{a} \langle q', \delta \rangle$$

such that $\delta(q, a) = q'$

 $\langle q, \delta \rangle \longrightarrow \langle q', \delta' \rangle$ such that $\Pi(q) = \langle q', \delta' \rangle$

Modelling the Adaptation Pattern with SAA

Implementing the Adaptation Pattern with SAA

Time-Triggered (every 3 time units)

Modelling the Adaptation Pattern with SAA

Time-Triggered (every 3 time units)

Enabled *-transition is the only outgoing transition

Modelling the Adaptation Pattern with SAA

Event Triggered: Vehicles are dangerously close to each other

Self-Adaptive System

Verifying Adaptation Patterns

Translation to FDR (a refinement-based verification tool)

Refinement-based Verification

Refinement-based Verification

Translation: SAA \longrightarrow FDR

Verifying different Adaptation Patterns

Expressivity of SAA

Model: Self-Adaptive Automata

SAA $\stackrel{\text{\tiny def}}{=} \langle Q, \Sigma, \Delta, q, \delta, \Pi \rangle$

- Q: Set of States
- Σ : Set of Events
- Δ : Set of Transition Functions
- q: Initial State
- $\delta: \qquad \text{Initial Transition Function} \\ Q \times \Sigma \rightharpoonup Q$
- $\Pi: \qquad \text{Adaptation Function} \\ Q \rightharpoonup Q \times \Delta$

SAA vs other self-modifying Models

SMFA [Schutt et al 1994]

- +Compact representation of dynamic behaviour
- +Add significant expressivity to base Model
- No verification tools

SAA

- +Compact representation of dynamic behaviour
- Does not add expressivity to base
 Model
- +Leverage existing verification tools

Proven through a bidirection Translation to Execution Monito (see paper)

Translation to FDR

Conclusion

- High-level Model for Self-Adaptive Systems
 - Modularizes Adaptation patterns
 - Enables experimentation with Adaptation Patterns

- Leverage existing verification technologies
 - Enables verification of Adaptation Patterns

• Future Work: improve usability, use other verification technologies

Thank you!

Questions?