
A Generic Algorithm for Program
Repair

Besma Khaireddine (Tunis, Tunisia)
Aleksandr Zakharchenko (Newark, NJ)

Ali Mili (Newark, NJ)
FormaliSE 2017

Buenos Aires, AR May 27, 2017

Ten Years of Program Repair

Engineering getting ahead of theoretical foundations.

•  What foundations are needed for program repair?
–  What does it mean to repair a program?
–  What is a fault? What does it mean to remove a fault?
–  Removing a fault or remedying a failure?
–  How can we tell that the new program is better than the original?
–  How to recognize genuine repairs with optimal precision and

recall?

Foundations for Program Repair

Relative correctness: property of a program P’ to
be more-correct than a program P with respect to a
specification R.
•  Ought to be an integral part of any discipline of

program repair.
–  Absolute correctness: criterion by which we can judge

the process of deriving a program P from a specification R.
–  Relative correctness: criterion by which we can judge the

process of deriving a program P’ as a repair of program P
with respect to specification R.

Foundations for Program Repair

Program Derivation

Absolute Correctness

Program Repair

Relative Correctness

R P

P’

R

P

Agenda

Motivation
Absolute and Relative Correctness
Faults and Fault Removals
A Generic Algorithm
Illustration
Conclusion

Motivation

Gains from a theory of program repair, based on relative
correctness:
1.  Characterizing certifiable fault removal.

–  Strict relative correctness. Re: actually climbing.
2.  Distinction: single multi-site vs multiple single-site faults.

–  Importance: counting faults; management of fault removal.

3.  Defining Unitary Increment of Correctness
Enhancement.
–  Small enough, large enough. Analogy: Mount Everest camps.

4.  Insights into Oracle Design.
–  Basis for generic algorithm.

Motivation

5.  Distinction: Removing a fault vs Remedying a failure.
–  No one-to-one correspondence between faults and failures.

6.  Letting Programs dictate the fault removal schedule.
–  Programs do not expose their faults at once.
–  Remove faults as they appear, failure will be remedied.

7.  Distinction: Debugging vs Testing.
–  Debugging without testing; static analysis.

8.  Distinction: Fault density vs Fault Depth.
–  Difference between

•  Program P has N faults, and
•  Program P requires N fault removals.

Motivation

Overall, in the absence of a formal definition of faults, we tend to
reason about faults by analogy with bad apples in a bushel of
otherwise good apples: When we say that a program has N
faults, we assume that
–  All the faults are visible/ accessible.
–  We can remove them in an arbitrary order.
–  We need N fault removals.
–  There is only one way to remove each fault.
–  Whenever we remove a fault, we have one

 fewer fault, and one fewer fault removal.
All true for apples, not for faults.

Agenda

Motivation
Absolute and Relative Correctness
Faults and Fault Removals
A Generic Algorithm
Illustration
Conclusion

Absolute and Relative Correctness

Refinement:

Absolute and Relative Correctness

Absolute correctness, Deterministic Programs:
Specification R, Program P.
•  Definition. P is said to be correct with respect to

R if and only if P refines R.
•  Proposition. P is correct with respect to R if and

only if 𝑑𝑜𝑚(𝑅∩𝑃)=𝑑𝑜𝑚(𝑅).
𝑑𝑜𝑚(𝑅∩𝑃): set of initial states for which program

 P satisfies specification R; the competence
 domain of P with respect to R.

Absolute and Relative Correctness

Absolute correctness, Deterministic Programs:

Absolute and Relative Correctness

Relative Correctness, Deterministic Programs:
•  Program P’ is said to be (strictly) more-correct

than program P with respect to R if and only if
the competence domain of P’ with respect to R is
a (proper) superset of that of P.
–  Whereas absolute correctness distinguishes between two

classes of candidate programs: correct and incorrect.
–  Relative correctness ranks candidate programs over a

partial ordering whose maximal elements are absolutely
correct.

Absolute and Relative Correctness

Relative Correctness, Deterministic Programs:
–  P’ is more-correct than P, but does not duplicate correct

behavior of P.

Absolute and Relative Correctness

Illustration:

Absolute and Relative Correctness

Illustration:

Absolute and Relative Correctness

Is Our Definition any Good?
•  Reflexive and Transitive, but not antisymmetric.
•  Culminates in absolute correctness.
•  Logically implies enhanced reliability.
•  Pointwise refinement.

Absolute and Relative Correctness

Reflexive and Transitive, but not antisymmetric.
•  Equally correct but distinct.

Absolute and Relative Correctness

Culminates in Absolute Correctness:
•  P is correct with respect to R if and only if
𝑑𝑜𝑚(𝑅∩𝑃)=𝑑𝑜𝑚(𝑅).

•  By monotonicity of intersection and domain, for
any candidate program Q we have

 𝑑𝑜𝑚(𝑅∩𝑄)�𝑑𝑜𝑚(𝑅).
•  Hence P is more-correct than Q.

Absolute and Relative Correctness
Relative Correctness and Reliability: the reliability of a program is
defined in terms of two parameters,
•  Specification R,
•  Probability distribution θ over the domain of R.

Absolute and Relative Correctness
Relative Correctness and Reliability:

Absolute and Relative Correctness
Relative Correctness and Refinement:

•  P’ refines P: Whatever P does, P’ can do as well or better.
–  P’ more-correct than P with respect to any specification.

Absolute and Relative Correctness
Reliability, Relative Correctness and Refinement:

Absolute and Relative Correctness

Now that we have vetted our definition of relative
correctness,
•  We can use it to comment on program repair

practice:
–  Using regression for patch validation: Sufficient but not necessary.

Leads to loss of recall.
–  Using fitness functions for patch validation: Necessary but not sufficient,

as fitness functions are approximations of reliability. Leads to loss of
Precision.

•  We argue: patch validation by means of strict relative
correctness.

Absolute and Relative Correctness

Relative Correctness for Non-Deterministic
Programs
•  Why: To analyze programs for relative correctness

without having to compute their function in detail.
Formula:

Absolute and Relative Correctness

Interpretation:
•  Larger competence domain.
•  Fewer outputs that violate R.

Absolute and Relative Correctness

Illustration:

Absolute and Relative Correctness

Illustration:

Absolute and Relative Correctness

Illustration:

•  P’: more-correct

than P.
•  P’’: more reliable

than P, not more-
correct.

Agenda

Motivation
Absolute and Relative Correctness
Faults and fault Removals
A Generic Algorithm
Illustration
Conclusion

Faults and Fault Removals

Any definition of a fault must implicitly refer to a
level of granularity at which faults are isolated:
•  Statement, expression, lexeme.
•  Not necessarily contiguous.

Feature:
•  Program part at the appropriate level of

granularity.

Faults and Fault Removals

Definition of a fault:
–  the (faulty) feature,
–  the program,
–  the specification.

Faults and Fault Removals

Definition of a fault:
–  the (faulty) feature,
–  the program,
–  the specification.

Faults and Fault Removals

We consider the following specification/ program:

We need to change two statements: (k=0) and (k!
=N).
•  Do we have one two-site fault or two one-site

faults?

Faults and Fault Removals
Of course, answer depends on whether one change produces a more-
correct program:
•  P: {x=0;k=0;while(k!=N){x=x+a[k];k=k+1;}}
•  P0: {x=0;k=1;while(k!=N){x=x+a[k];k=k+1;}}
•  P1: {x=0;k=0;while(k!=N+1){x=x+a[k];k=k+1;}}
•  P’: {x=0;k=1;while(k!=N+1){x=x+a[k];k=k+1;}}
Competence Domains:

•  𝐶𝐷={𝑠|𝑎[0]=𝑎[𝑁]}
•  𝐶𝐷0={𝑠|𝑎[0]=0}
•  𝐶𝐷1={𝑠|𝑎[𝑁]=0}
•  𝐶𝐷↑′ =𝑆.
One two-site fault.

Faults and Fault Removals

Faults and Fault Removals

Same question for:

We need to change two statements: (k=0) and (k!
=N).
•  Do we have one two-site fault or two one-site

faults?

Faults and Fault Removals

Initialization Example:
•  P: {k=0; while(k!=N){a[k]=0;k=k+1;}}
•  P0: {k=1; while(k!=N){a[k]=0;k=k+1;}}
•  P1: {k=0; while(k!=N+1){a[k]=0;k=k+1;}}
•  P’: {k=1; while(k!=N+1){a[k]=0;k=k+1;}}
Competence domains

•  𝐶𝐷={𝑠|𝑎[0]=0�𝑎[𝑁]=0}
•  𝐶𝐷0={𝑠|𝑎[0]=0}
•  𝐶𝐷1={𝑠|𝑎[𝑁]=0}
•  𝐶𝐷↑′ =𝑆.
Two one-site faults.

Faults and Fault Removals

Faults and Fault Removals

Elementary fault (for a given level of granularity):
•  A fault such that no part of it is a fault.

–  (k=0,k!=N) is an elementary fault in the sum program, not in
the initialization program.

•  All single-site faults are elementary faults.

Faults and Fault Removals

Fault Density: Number of elementary faults in a program.
Fault Depth: Minimal number of elementary fault removals that separate
program from correctness.
•  Faults may hide each other, fault removal affects subsequent fault

configuration,
–  Hence depth is a more reliable measure of faultiness.

•  Density does not decrease by 1 with each fault removal,
𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑃’)�𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑃)−1.

•  Depth kind-of-does: 𝑑𝑒𝑝𝑡ℎ(𝑃’)�𝑑𝑒𝑝𝑡ℎ(𝑃)−1.
–  Equality if P’ is on the minimal path from P to a correct program.

•  For a given fault depth,
–  Greater fault density is better. Fault density a quality attribute?

Agenda

Motivation
Absolute and Relative Correctness
Faults and fault Removals
A Generic Algorithm
Illustration
Conclusion

Generic Algorithm

Pprime=P;
while (! Abscor(Pprime))
 {Pprime = StrictRelCorrect(Pprime);}

Producing an Absolutely Correct Program?
•  Yes, with respect to T\R: pre-restriction of R to T.
•  Under some conditions: Pprime more-correct than P with respect to

R.

Input Program P
Test Data set T
Predicate R(s,s’)
Predicate domR(s)

Output Program Pprime, more-correct than P wrt T\R.
Maybe (if patch generation is good): abs. cor. wrt T\R.

Generic Algorithm

•  Patch Generation: Immaterial for our purposes.
•  Patch Validation:

–  Absolute Correctness:

–  Relative Correctness:

–  Strict Relative Correctness:

Generic Algorithm

•  Patch Generation: Immaterial for our purposes.
•  Patch Validation:

–  Absolute Correctness:
•  P’ passes this oracle for all s in T: absolutely correct wrt T\R.

–  Relative Correctness:
•  P’ passes this oracle for all s in T: more-correct than P wrt T\R.

–  Strict Relative Correctness:
•  P’ passes this oracle: strictly more-correct than P wrt T\R.

Agenda

Motivation
Absolute and Relative Correctness
Faults and fault Removals
A Generic Algorithm
Illustration
Conclusion

Illustration
To illustrate our discussions
•  We take the replace component of the Siemens Benchmark (563

LOC).
•  We enter six modifications to it (provided in the benchmark).
•  We take the test data set provided by the benchmark (5542).
•  R(): the original program. domR(): true.

–  Non-deterministic specifications: in progress.
•  Patch generation: mutant generator,

–  Parameterized to the same nature, scale as modifications.
–  Generates 90 mutants per call.

•  Patch validation: oracle infrastructure.
•  Experiment: compute all the correctness enhancement paths.

Illustration
Experimental Algorithm
•  Input: P, T, R, domR.
•  Output: Graph showing all the paths from P to correct programs.

Process:
1.  Initial graph = {P}.
2.  If all the maximal nodes of the graph are absolutely correct, DONE.
3.  Else, for each maximal node that is not absolutely correct,

1.  Generate mutants
2.  Select those that are strictly more-correct, add them to the graph. Goto 2.

4.  If all maximal nodes are not abs cor and admit no mutants that are
strictly more-correct, then increase multiplicity, Goto 3.2

Illustration
If the bad apple
analogy held,
•  P has 6 faults.
•  Next layer 5, then
 4, then 3, etc..
•  density = depth.
•  Both decrease by
 1 at each layer.

Ready to see reality?

–  drum roll……………………….

Illustration

Observations:
•  6 modifications in P, 1 fault.
•  depth decreases by 1 for each fault

removal.
•  density: all over the map.
•  m79.3.42.47 not absolutely correct,

admits no relcor mutant.
–  Double mutation yields two

programs, both absol. correct.
–  One of them original replace.

•  The cost of failure-based repair:
–  Fault-based:
𝑑𝑒𝑝𝑡ℎ×𝑂(𝑁)=𝑂(𝑁).

–  Failure-based: 𝑂(𝑁↑𝑑𝑒𝑝𝑡ℎ ).

Agenda

Motivation
Absolute and Relative Correctness
Faults and fault Removals
A Generic Algorithm
Illustration
Conclusion

Conclusion

•  Relative correctness ought to be an integral part of the
study of program repair.
–  The same way that absolute correctness is part of the study of

program construction.

•  Removing faults without a definition of fault and fault
removal is inherently flawed:
–  Confusion between multi-site faults and multiple single-site faults.
–  Confusion between density and depth.
–  Confusing between remedying a failure and removing a fault.
–  Unnecessary conditions cause loss of recall.
–  Insufficient conditions cause loss of precision.

•  The bad apple analogy is a bad apple analogy.

Conclusion

•  Short term Prospects
–  Combine existing patch generation with our oracle-based patch

validation.

•  Longer term Prospects
–  Turn the mathematics of relative correctness from means to

validate repair candidates to means to generate them.
•  Generating more-correct-by-construction repair candidates.

–  In the same way that many researchers in the 80’s and 90’s
turned mathematics of program correctness into means to
generate correct-by-construction programs.

•  Dijkstra, Gries, Hehner, Hoare, Morgan, etc.

–  Correctness Enhancement pervades Soft. Engineering.

Agenda

Motivation
Absolute and Relative Correctness
Faults and fault Removals
A Generic Algorithm
Illustration
Conclusion

