

A Trusted Approach to Design a Network Monitor

<u>Koichi Shimizu</u>, Teruyoshi Yamaguchi, Tsunato Nakai, Takeshi Ueda, Nobuhiro Kobayashi and Benoît Boyer

> MITSUBISHI ELECTRIC CORPORATION FormaliSE 2017

1

- Background
- Whitelisting Network Monitor
- Trusted Approach for Whitelisting
 - Model-based
 - Automation
 - Verification
- Conclusion

Cyber attacks against industrial control systems (ICS)

- A rise after Stuxnet in 2010 and high ever since
- New one always appears
 - Power outage in Ukraine(2015,2016), Operation Ghoul(2016), ...

- ICS has its own requirements
 - Availability
 - Security must not slow nor stop the service
 - Long-term operation
 - Security must be effective throughout the lifetime

	General IT systems	ICS
Targets of security	Information	Facilities and Service
Priority of security	Confidentiality	Availability
Lifetime	3-5 years	10-20 years
Operating time	Business hours	24 hours, 365 days

4

- Whitelisting network monitor is suitable for ICS
 - Whitelist interprets deviations from the normal behavior as attacks

<u>Whitelist</u>

- List of "Allow", all the rest denied
- Potential to detect new attacks

<u>Blacklist</u>

- List of "Deny", all the rest allowed
- Accurate detection of known attacks

5

- Why suitable for ICS?
 - Availability:
 - Pattern matching is lightweight
 - Whitelist doesn't need updating once defined
 - cf. antivirus software
 - Long-term operation:
 - Potential to detect new attacks in the future

What's normal behavior?

- Consider a simple ICS
 - Consists of HMI, PLC and field devices
 - HMI/PLC sends commands/responses via LAN
 - Fixed "normal behavior" of commands/responses

© Mitsubishi Electric Corporation

Whitelisting Network Monitor

Normal behavior as a whitelist

State	Protocol	Sender	Receiver	Data length	Command	Payload condition	Period [ms]
Operation	Control	192.168.0.10 any	192.168.0.20 59306	1024	QuerySpeed	_	5
Operation	Control	192.168.0.10 any	192.168.0.20 59306	2048	ChangeSpeed	0~90	50

Motivation for a trusted approach

• A mistake in the whitelist causes a low detection rate or false positiveness

- A bug in the network monitor causes the same problem
- How to be confident about the network monitor?

- Proposal
 - Use of a model-based development framework
 - To clearly define a normal traffic specification
 - In the future, to be integrated into usual model-based development of industrial embedded software
 - Automation
 - The whitelist and the network monitor program are automatically generated to avoid manual mistakes
 - Verification
 - The model and the network monitor program are verified to ensure that there are no mistakes or bugs

Workflow

[©] Mitsubishi Electric Corporation

Workflow

[©] Mitsubishi Electric Corporation

Toy example (again)

Consists of HMI, PLC and field devices

- but field devices are out of scope of modelling

• HMI/PLC sends commands/responses via LAN

Definition of system states and commands in use

- Just for ease
 - Three system states
 - Only "Operation" has a set of commands in use

System state	Command in use	Parameter	Period [ms]
Operation	ChageSpeed	0~90	50
	QuerySpeed	Device number	5
Maintenance		—	_
Abnormal		<u> </u>	_

Modelling of a control system

Resulting whitelist (again)

State	Protocol	Sender	Receiver	Data length	Command	Payload condition	Period [ms]
Operation	Control	192.168.0.10 any	192.168.0.20 59306	1024	QuerySpeed	Device number	5
Operation	Control	192.168.0.10 any	192.168.0.20 59306	2048	ChangeSpeed	0~90	50
	•••						

Modelling of a control system

Devices and connections between them at top level

Control model and communication model inside each device

18

Control model

- **Defines control behaviour**
- Not needed for whitelist generation

Communication model is a state machine that defines

- System states and transitions between them
- Command sequence under each system state

20

Communication model is a state machine that defines

- System states and transitions between them
- Command sequence under each system state

- Modelling of a period condition in Simulink
 - The guards "after" and "before" are close but not sufficient

Using global timers is too ad-hoc

Workflow

[©] Mitsubishi Electric Corporation

- Extract command data from communication model
 - From cmd_out of HMI to cmd_in of PLC
 - Read1 is sent in the following example

Extracted data parsed, formatted and converted to whitelist

<pre> <pre></pre> <pre><!--</th--><th>Parse & Format</th><th>HMI, HMI, HMI, HMI, HMI, HMI, HMI, HMI,</th><th>PLC, PLC, PLC, PLC, PLC, PLC, PLC, PLC,</th><th>SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation,</th><th>Read1 Read2</th></pre></pre>	Parse & Format	HMI, HMI, HMI, HMI, HMI, HMI, HMI, HMI,	PLC, PLC, PLC, PLC, PLC, PLC, PLC, PLC,	SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation, SYS_Operation,	Read1 Read2
---	----------------------	--	--	--	---

Conversion to whitelist using detailed information at implementation level

Workflow

[©] Mitsubishi Electric Corporation

Automated generation of the network monitor

MITSUBISHI

Chanaes for the Better

[©] Mitsubishi Electric Corporation

Automated generation of the network monitor

Whitelisting as a decision tree

© Mitsubishi Electric Corporation

The model is the starting point of the trusted monitor, so needs verification by model checking

[©] Mitsubishi Electric Corporation

- Experiment using Simulink Design Verifier (SLDV)
 - Run-time errors and dead logics can be detected
 - The latter is of some use
 - Proof of properties defined in Simulink
 - Takes a lot of time for a model that has a relatively large state machine of our purpose
- As a result, SLDV is not sufficient for our purpose

The network monitor is responsible for detection and must be free of bugs

[©] Mitsubishi Electric Corporation

Verification of the network monitor

[©] Mitsubishi Electric Corporation

- Frama-C/WP
 - Static analysis and verification of C programs
 - The WP plugin for formal reasoning
 - The following example asserts
 - i < MAX_INT to avoid integer overflow
 - the pointer "data" is valid

```
//@assert signed_overflow: i+1<=2147483647;
i++;
//@assert mem_access: ¥valid_read(data);
if (*data == 1) {
....
```


Verification of the network monitor

Whitelisting as a decision tree


```
/*@requires ¥valid((tree_t*) rules)
        && valid_tree_t(*rules);
    @requires parsed;
    @ensures ¥result == 1 ==> matched;
    @assigns ¥nothing; */
int monitor(void);
```


@predicate rule_2 =		
state == 0	&&	
send_info[IP] == 0x0a80001	&&	
0 <= send_info[TCP] <= 65535	&&	
recv_info[IP] == 0xc0a80014	&&	
recv_info[TCP] == 0x0c	&&	
command == 0x2112	&&	
timers[0] == 5;		

No verification about conversion is not a big issue

[©] Mitsubishi Electric Corporation

- Proposal
 - Trusted whitelisting network monitor
 - Automated generation of the whitelist based on a model-based development framework, where the model can be verified
 - The network monitor is automatically generated from the whitelist and can be proven to be free of bugs
 - Open problems / future works
 - Modelling: period conditions can't be encoded but are supposed to be given as an implementation detail
 - Automation: whitelist generation is not fully automated
 - Verification: model verification needs a different tool
 - Others: evaluation of the detection rate, etc.