
Model Checking for Mobile
Android Malware Evolution

Aniello Cimitile, Fabio Martinelli, Francesco Mercaldo, Vittoria Nardone,
Antonella Santone, Gigliola Vaglini

{cimitile, vnardone,santone}@unisannio.it
Department of Engineering, University of Sannio, Italy

{fabio.martinelli, francesco.mercaldo}@iit.cnr.it
Institute for Informatics and Telematics, National Research Council of Italy (CNR)

gigliola.vaglini@unipi.it
Department of Information Engineering, University of Pisa, Italy

http://unisannio.it
http://iit.cnr.it
http://unipi.it

Software Evolution

User needs &
The environment

change

Malware, as any software, Evolves

User needs:
• to evade detection
• new threats

&
The environment

change

Motivation

To propose a novel approach that use temporal logic formula to
infer malware evolution.

To demonstrate that Android malware is not developed by zero

To propose an useful method to malware analysts to predict future
threats.

To contribute to the current mobile malware research by pointing to
the evolution of possible vulnerabilities concerning the Android
platform.

Our Approach

Process 1: System Call
Extraction

The APK is installed and started on an Android Device Emulator
BOOT_COMPLETED event is generated
The corresponding sequence of system call is gathered in a
textual format

Syscalls

Process 2: XES-based
Event Stream Generation

txt
Syscalls

Convert text syscalls
in XES format

trc0	=	<<a.b>*.c.d>*	
trc1	=	<*.<a>*.c>*	
trc2	=	<*.<d.f>*>*	
trc3	=	<<a>*.b.d>*

TRACE
from - to

syntax: t::=e|t.t| <t>∗ |λ
where e ∈ A and λ is the

empty sequence.

The operator “.” represents
trace concatenation.

The operator “∗” represents
the iteration of a trace.

Process 3: Property
Based Reduction

trc0	=	<<a.b>*.c.d>*	
trc1	=	<*.<a>*.c>*	
trc2	=	<*.<d.f>*>*	
trc3	=	<<a>*.b.d>*

TRACE

Selective
mu-calculus

φ
ff
v.Z

Reductio
n

toolfrom - to

Properties

in

TRACE
Reduced

Process 4: Model
Discovery

CCS
Model

Build
TRACE

Reduced

Syntactic Transformation Function T

Process 5: Formal Analysis
of Malware Evolution

droidSapiens

considers the family X as “ancestor” of the family Y if the formula
φx, characterizing the family X, is TRUE on more than the 35% of

the apps belonging to Y.

The Dataset

We retrieved the Android malware applications from both Genoma1
and Drebin2 dataset

1 Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution. In Security and
Privacy (SP), 2012 IEEE Symposium on, pages 95–109. IEEE, 2012

2 D. Arp, M. Spreitzenbarth, M. Huebner, H. Gascon, and K. Rieck. Drebin: Efficient and explainable
detection of android malware in your pocket. In NDSS, 2014.

858 sample
5 malware families

Preliminary Results

Further Evaluation

We combine the specified formulae to validate the inferred
phylogenetic tree

Further Evaluation

ancestor
\/

descendant

Further Evaluation

no relation
found

Further Evaluation

ancestor-descendant line tree

Comparison between formulae

Time Verification

Tex is the time employed to retrieve system calls (i.e., 60 seconds
for each application)

Tmod is the time required to build the model

Tchk is the time to verify the properties.

TTOT value is the sum of all these contributes.

Remarks and Future
Works

We use model checking in order to investigate Android malware evolution. We
build the phylogenetic tree identifying the ancestor and the descendant between
mobile malware families.

We obtain encouraging results and they suggest that the approach is remarkably
accurate.

As future work we intend to investigate the use of the k-bsimulation to measure
the similarity among malware families.

Furthermore, we intend to investigate the multiple ancestors.

Thanks for your attention

We are grateful for receiving comments, observations, suggestions,
and collaborations with other research groups which could improve

our research.

