Model Checking for Mobile Android Malware Evolution

Aniello Cimitile, Fabio Martinelli, Francesco Mercaldo, <u>Vittoria Nardone</u>, Antonella Santone, Gigliola Vaglini

{fabio.martinelli, francesco.mercaldo}@<u>iit.cnr.it</u> Institute for Informatics and Telematics, National Research Council of Italy (CNR)

> {cimitile, <u>vnardone</u>,santone}@<u>unisannio.it</u> Department of Engineering, University of Sannio, Italy

gigliola.vaglini@<u>unipi.it</u> Department of Information Engineering, University of Pisa, Italy

Software Evolution

Malware, as any software, Evolves

&

User needs:

- to evade detection
- new threats

The environment change

Motivation

- To propose a novel approach that use temporal logic formula to infer malware evolution.
- * To demonstrate that Android malware is not developed by zero
- To propose an useful method to malware analysts to predict future threats.
- To contribute to the current mobile malware research by pointing to the evolution of possible vulnerabilities concerning the Android platform.

Our Approach

Process 1: System Call Extraction

- The APK is installed and started on an Android Device Emulator
- BOOT_COMPLETED event is generated
- The corresponding sequence of system call is gathered in a textual format

Process 3: Property Based Reduction

- $\mathcal{R}est(T) = \{t \mid e.t \in T\} \cup \{t_1. < e.t_1 >^* .t_2 \mid < e.t_1 >^* .t_2 \in T\}$
- $Cont(T) = \{t_2 \mid \langle t_1 \rangle^* : t_2 \in T\}$

Process 5: Formal Analysis of Malware Evolution

droidSapiens

considers the family **X** as "ancestor" of the family **Y** if the formula $\boldsymbol{\varphi}_{\mathbf{x}}$, characterizing the family **X**, is TRUE on more than the 35% of the apps belonging to **Y**.

The Dataset

Family	#samples	date
Geinimi	73	12-2010
Plankton	81	06-2011
DroidKungFu	183	08-2011
Opfake	423	2013
FakeInstaller	98	2014

858 sample5 malware families

We retrieved the Android malware applications from both Genoma¹ and Drebin² dataset

¹Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution. In Security and Privacy (SP), 2012 IEEE Symposium on, pages 95–109. IEEE, 2012

² D. Arp, M. Spreitzenbarth, M. Huebner, H. Gascon, and K. Rieck. Drebin: Efficient and explainable detection of android malware in your pocket. In NDSS, 2014.

Preliminary Results

Family (Number of apps) Formulae	Geimini (73)	Plankton (81)	DroidKungFu (183)	OpFake (423)	FakeInstaller (98)
φ_G	60 (82%)	38 (46%)	72 (39%)	135 (31%)	14 (14%)
φ_P	5 (6%)	54 (66%)	12 (6%)	20 (4%)	13 (13%)
φ_{DKF}	8 (11%)	13 (16%)	145 (79%)	155 (36%)	16(16%)
φ_{OF}	20 (27%)	23 (28%)	55 (30%)	229 (54%)	45 (45 %)
φ_{FI}	18(24%)	15 (18%)	51 (27%)	140(33%)	51 (52%)

Family (Number of apps) Formulae	Geimini (73)	Plankton (81)	DroidKungFu (183)	OpFake (423)	FakeInstaller (98)
$\begin{array}{c} \varphi_{G} \lor \varphi_{P} \\ \varphi_{G} \lor \varphi_{DKF} \\ \varphi_{DKF} \lor \varphi_{OF} \\ \varphi_{OF} \lor \varphi_{FI} \\ \varphi_{P} \lor \varphi_{DKF} \\ \varphi_{P} \lor \varphi_{OF} \end{array}$	65 (89%)	59 (72%)	81 (44%)	136 (32%)	27 (27%)
	65 (89%)	50 (61%)	152 (83%)	286 (67%)	30 (30%)
	28 (38%)	30 (37%)	151 (82%)	250 (59%)	60 (61%)
	21 (28%)	23 (28%)	61 (33%)	248 (58%)	51 (52%)
	13 (17%)	65 (80%)	150 (81%)	173 (40%)	16 (16%)
	21 (28%)	62 (76%)	65 (35%)	230 (54%)	58 (59%)
$\begin{array}{c} \varphi_P \lor \varphi_{FI} \\ \varphi_G \lor \varphi_{DKF} \lor \varphi_{OF} \lor \varphi_{FI} \end{array}$	19 (26%)	60 (74%)	61 (33%)	141 (33%)	64 (65%)
	70 (95%)	57 (70%)	160 (87%)	335 (79%)	76 (77%)

We combine the specified formulae to validate the inferred phylogenetic tree

(Nu Formulae	Family imber of apps)	Geimini (73)	Plankton (81)	DroidKungFu (183)	OpFake (423)	FakeInstaller (98)
$\begin{array}{c} \varphi_G \lor \varphi_P \\ \varphi_G \lor \varphi_{DKF} \\ \varphi_{DKF} \lor \varphi_{OF} \\ \varphi_{OF} \lor \varphi_{FI} \end{array}$	ancestor \/ descendant	65 (89%) 65 (89%) 28 (38%) 21 (28%)	59 (72%) 50 (61%) 30 (37%) 23 (28%)	81 (44%) 152 (83%) 151 (82%) 61 (33%)	136 (32%) 286 (67%) 250 (59%) 248 (58%)	27 (27%) 30 (30%) 60 (61%) 51 (52%)
$\begin{array}{c} \varphi_P \lor \varphi_{DKF} \\ \varphi_P \lor \varphi_{OF} \\ \varphi_P \lor \varphi_{FI} \\ \varphi_G \lor \varphi_{DKF} \lor \end{array}$	$\varphi_{OF} \lor \varphi_{FI}$	13 (17%) 21 (28%) 19 (26%) 70 (95%)	65 (80%) 62 (76%) 60 (74%) 57 (70%)	150 (81%) 65 (35%) 61 (33%) 160 (87%)	173 (40%) 230 (54%) 141 (33%) 335 (79%)	16 (16%) 58 (59%) 64 (65%) 76 (77%)

(Nu Formulae	Family umber of apps)	Geimini (73)	Plankton (81)	DroidKungFu (183)	OpFake (423)	FakeInstaller (98)
$ \begin{array}{c} \varphi_G \lor \varphi_P \\ \varphi_G \lor \varphi_{DKF} \\ \varphi_{DKF} \lor \varphi_{OF} \\ \varphi_{OF} \lor \varphi_{FI} \end{array} $		65 (89%) 65 (89%) 28 (38%) 21 (28%)	59 (72%) 50 (61%) 30 (37%) 23 (28%)	81 (44%) 152 (83%) 151 (82%) 61 (33%)	136 (32%) 286 (67%) 250 (59%) 248 (58%)	27 (27%) 30 (30%) 60 (61%) 51 (52%)
$ \begin{array}{c} \varphi_P \lor \varphi_{DKF} \\ \varphi_P \lor \varphi_{OF} \\ \varphi_P \lor \varphi_{FI} \end{array} $	no relation found	13 (17%) 21 (28%) 19 (26%)	65 (80%) 62 (76%) 60 (74%)	150 (81%) 65 (35%) 61 (33%)	173 (40%) 230 (54%) 141 (33%)	16 (16%) 58 (59%) 64 (65%)
$\varphi_G \lor \varphi_{DKF} \lor$	$\varphi_{OF} \lor \varphi_{FI}$	70 (95%)	57 (70%)	160 (87%)	335 (79%)	76 (77%)

Family (Number of apps) Formulae	Geimini (73)	Plankton (81)	DroidKungFu (183)	OpFake (423)	FakeInstaller (98)
$\varphi_G \lor \varphi_P$	65 (89%)	59 (72%)	81 (44%)	136 (32%)	27 (27%)
$\varphi_G \lor \varphi_{DKF}$	65 (89%)	50 (61%)	152 (83%)	286 (67%)	30 (30%)
$\varphi_{DKF} \lor \varphi_{OF}$	28 (38%)	30 (37%)	151 (82%)	250 (59%)	60 (61%)
$\varphi_{OF} \lor \varphi_{FI}$	21 (28%)	23 (28%)	61 (33%)	248 (58%)	51 (52%)
$\varphi_P \lor \varphi_{DKF}$	13 (17%)	65 (80%)	150 (81%)	173 (40%)	16 (16%)
$\varphi_P \lor \varphi_{OF}$	21 (28%)	62 (76%)	65 (35%)	230 (54%)	58 (59%)
$\varphi_P \lor \varphi_{FI}$	19 (26%)	60 (74%)	61 (33%)	141 (33%)	64 (65%)
$\varphi_G \lor \varphi_{DKF} \lor \varphi_{OF} \lor \varphi_{FI}$	70 (95%)	57 (70%)	160 (87%)	335 (79%)	76 (77%)

ancestor-descendant line tree

Comparison between formulae

Time Verification

Family	T_{ex}	T_{mod}	T_{chk}	T_{TOT}
Geinimi	4380	2.173	3.386	4385.559
Plankton	4860	1.386	2.481	4863.867
DroidKungFu	10980	7.791	8.141	10995.932
Opfake	25380	2.34	11.576	25393,916
FakeInstaller	5880	1.266	2.403	5883.669

- Tex is the time employed to retrieve system calls (i.e., 60 seconds for each application)
- Tmod is the time required to build the model
- Tchk is the time to verify the properties.
- TTOT value is the sum of all these contributes.

Remarks and Future Works

- We use model checking in order to investigate Android malware evolution. We build the phylogenetic tree identifying the ancestor and the descendant between mobile malware families.
- We obtain encouraging results and they suggest that the approach is remarkably accurate.
- As future work we intend to investigate the use of the k-bsimulation to measure the similarity among malware families.
- Furthermore, we intend to investigate the multiple ancestors.

Thanks for your attention

We are grateful for receiving comments, observations, suggestions, and collaborations with other research groups which could improve our research.