Efficient SAT-Based Software Analysis: from
Automated Testing to Automated Verification and
Repair

Nazareno Aguirre
Departamento de Computacién, FCEFQyN
Universidad Nacional de Rio Cuarto, and
Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Argentina
Email: naguirre@dc.exa.unrc.edu.ar

Formal approaches to software development have tradition-
ally aimed at guaranteeing software correctness, through the
use of notations, analysis mechanisms and other elements
founded on solid mathematical grounds. Since the seminal
works of Hoare, Floyd and others, formal methods have used
logical notations to capture intended software behavior, and
proposed techniques for reasoning about software correct-
ness, originally mainly through deductive approaches. Formal
methods for software development have been presented as a
stronger correctness guarantee compared to informal, widely
employed techniques such as testing. While advantages of
formal methods make them appealing, the above-described
original composition of formal methods implied two main
difficulties for their effective use, namely, the need to dom-
inate the logical notations used to specify intended software
behavior, and mastering the associated deductive techniques
necessary for analysis, i.e., for verifying software correctness.

The mentioned difficulties related to formal methods have
caused many practitioners to consider them worthwhile mostly
for safety-critical and other kinds of software whose correct
behavior is crucial. With the advent of model checking,
automated deduction and other automated formal analysis
techniques, the second of the above mentioned difficulties
became less important, since manual or semi-automated de-
ductive techniques associated with the use of formal methods
started to be replaced by fully automated ones. This (then)
new trend in formal methods helped to broaden the adoption
of formal methods in various software engineering contexts,
but had its own problems, most notably scalability (automated
analyses are often accompanied by a high computational cost)
and what we will call thoroughness (automation generally re-
quires analyzing only bounded or limited cases, thus reducing
the strength of the obtained verification results). The former
has been the main cause for delaying the effective use of
automated formal methods directly on software (e.g., applying
them to software designs rather than to actual code), and
the latter is the reason why some automated formal meth-
ods are called lightweight, to contrast with the heavyweight
ones relying mainly in formal deduction as a mechanism for
analysis. The relevance of lightweight formal methods, and in
particular of their direct application to code rather than designs

and other more abstract representations, is now especially im-
portant, considering today’s “agile” world with fewer designs
and intermediate notations, and the further concentration of
development activities in code. Various formal methods, and
in particular lightweight ones, are then continuously trying to
better tackle code.

In this talk we will discuss a particular lightweight formal
automated technique, that we have been using for more than
15 years to directly analyze code. The so-called technology
for analysis is SAT-solving, i.e., the process of automatically
deciding a propositional formula’s satisfiability. Besides dis-
cussing how various relevant problems in software engineering
can be encoded as boolean satisfiability cases, we will describe
how quickly these problems become too complex to be directly
handled by SAT solvers, and our approaches to at least
partially overcome the scalability and thoroughness issues
mentioned before. We will discuss three main problems of
increasing complexity in software engineering, namely test
generation, bounded verification (the lightweight counterpart
of the traditional verification problem), and a problem we have
more recently started working on, automated program repair.
Besides the particularities of these problems in our context,
and the details of how they are handled, we will describe a
number of techniques to increase scalability, that we believe
can be generalized to be applied in other contexts. These range
from techniques that deal with solvers in a black-box fashion,
e.g., improving analysis by producing simpler formulas to be
fed to solvers, to techniques that “tamper” directly with how
SAT solvers proceed when checking formula satisfiability.

Finally, during the last part of our talk we will discuss again
the move from heavyweight to lightweight formal methods,
and the increasing use of what some researchers have called
invisible formal methods, i.e., the use of formal methods
in helping to solve problems of informal software develop-
ment approaches. We will discuss some risks of taking the
route toward lightweight formal methods too far, in particular
eliminating the need for formal specification. We will argue
that while formal specifications may be considered accessory
in some contexts, they are essential for difficult analysis
problems, in particular automated program repair.

This is joint work with Marcelo Frias and other contributors.



