
Validating Formal Specifications

using Testing-Based Specification

Animation

Shaoying Liu

Department of Computer Science

Faculty of Computer and Information Sciences

Hosei University, Japan

Email: sliu@hosei.ac.jp

HP: http://cis.k.hosei.ac.jp/~sliu/

This work was supported by JSPS KAKENHI Grant

Number 26240008.

mailto:sliu@hosei.ac.jp
http://cis.k.hosei.ac.jp/~sliu/

Overview

1. Challenge for Formal Methods in

Validation

2. Testing-Based Specification Animation

3. Teat Case Generation

4. A Small Experiment

5. Conclusion

6. Future Work

1. Challenge for Formal

Methods in Validation

 Validation

 Formal

 Specification

Features of specification validation:

(1) Efficient and effective communications between the user and the analyst are

required.

(2) Examples are needed because they are the most effective way to help the user

understand the specification.

 Formal proof cannot be applied for validation.

2. Testing-Based Specification

Animation

Specification animation is a technique and

process to dynamically demonstrate the relation

between input and output defined in the

specification in a visualized fashion.

Testing-based specification animation is to

use test cases to dynamically demonstrate the

input-output relation in a visualized fashion.

class S1;

const; type; var; inv;

method Init;

method P1;

method P2;

method P3;

end-class;

class S2;

const; type; var; inv;

method Init;

method Q1;

method Q2;

method Q3;

end-class;

module SYSTEM;

const; type; var; inv;

process Init;

process A1;

process A2;

end-module;

module A2-decom;

const; type; var; inv;

process Init;

process B1;

process B2;

process B3;

end-module;

A1 A2

B1

B2

B3

 The structure of a SOFL specification:

 CDFDs + modules + classes

s

s

SOFL: Structured Object-Oriented Formal Language

Example:

A simplified ATM specification in SOFL:

balance

w_draw

Show_

Balance

Receive_

Command
sel

amount

pass

account1

account2

Withdraw

cash

e_msg

balance

account_file1

card_id

Check_
Password

pr_meg

No. 1

 module SYSTEM_ATM;

 type

 Account = composed of

 account_no: nat

 password: nat

 balance: real

 end

 var

 account_file: set of Account;

 inv

 forall[x: account_file] | x.balance >= 0;

 behav CDFD_No1;
 …

process Withdraw(amount: real, account1: Account)

 e_msg: string | cash: real

 ext wr account_file: set of Account

 pre account1 inset account_file

 post if amount <= account1.balance

 then

 cash = amount and

 let Newacc =

 modify(account1, balance -> account1.balance – amount)

 in

 account_file = union(diff(~account_file, {account1}), {Newacc})

 else

 e_meg = "The amount is over the limit. Reenter your amount.")

comment

…

end_process;

end_module

Basic idea of SOFL specification

animation for validation

{withdraw_comm}[Receive_Command, Check_Password, Withdraw]{cash}

{withdraw_comm}[Receive_Command, Check_Password, Withdraw]{err2}

{withdraw_comm}[Receive_Command, Check_Password]{err1}

{withdraw_comm}[Receive_Command, Check_Password, Show_Balance]{balance}

{balance_comm}[Receive_Command, Check_Password, Withdraw]{cash}

{balance_comm}[Receive_Command, Check_Password, Withdraw]{err2}

{balance_comm}[Receive_Command, Check_Password]{err1}

{balance_comm}[Receive_Command, Check_Password, Show_Balance]{balance}

Animation of a single scenario

{withdraw_comm}[Receive_Command11, Check_Password11, Withdraw11]{cash}

Single Process Specification

Animation

height 1

Calculate_Volume

length

width

radius

rectangular_column_volume

cylinder_column_volume

A process in SOFL is a six-tuple (P, PI , PO,

PE, Ppre, Ppost).

process Calculate_Volume(length, width: real |

 radius: real)

 rectangular_column_volume: real |

 cylinder_volume: real

ext rd height: real

pre length >= 0 and width >= 0 and height >= 0 or

 radius >= 0 and height >= 0

post bound(length, width) and

 rectangular_column_volume = length * width * height or

 bound(radius) and

 cylinder_volume = radius * radius * 3.14 * height

end_process;

3. Test Case Generation

We propose a functional scenario-based

method for test case generation.

Definition 1: Let Ppre = P1 ˅ P2 ˅ … ˅ Pn and

 Ppost = Q1 ˅ Q2 ˅ … ˅ Qm be a

disjunctive normal form, respectively. Then,

we call a conjunction Pi ˄ Qj (i = 1, …, n; j = 1,

…, m) a functional scenario.

Definition 2: The functional scenario Pi ∧ Qj of

process P is said valid if and only if the following

condition holds:

∀in1,in2 ∊ PI ∙ in1 ≠ in2 ⇒

 (varSet(Pi)⊆ in1 ∨ varSet(Pi)⊆ in2) ∧

 (varSet(Pi)⊆ in1 ⇒ varSet(Qj) ⋂ in2 = {}) ∧

 (varSet(Pi)⊆ in2 ⇒ varSet(Qj) ⋂ in1 = {})

A valid functional scenario Pi ∧ Qj ensures that

the input satisfying Pi can be used in Qj to define

the output of the process, and therefore requires

that Pi and Qj do not contain input variables of

different input ports.

Definition 3: A test case for a process P is a set

of values for input, output, and external

variables.

Example:

 tc ={(x₁,5),...,(~z₁,10), ...,(y₁,50),...,(z₁,20),...}

where xi is an input variable, yj an output

variable, ~zk an initial external variable, and zk a

final external variable.

Criteria for test case generation:

Criterion 1: Generate a test case for every

group of input variables of every input port to

ensure that at least one valid functional

scenario is made true by each test case.

Criterion 2: Generate a test case for every

group of output variables of every output port to

ensure that at least one valid functional

scenario is made true by each test case.

Criterion 3: Generate a test case for every initial

external variable and every final external

variable to ensure that at least one valid

functional scenario is made true by each test

case.

Criterion 4: For every valid functional scenario,

generate a test case that makes the scenario

true.

Criterion 5: For every function, data item, and

constraint defined in the informal requirements

specification, generate a test case to ensure that

each of them is tested at least once.

Using a test case for animation:

dynamic demonstration

4. A Small Experiment

The testing-based specification animation

approach is compared to specification review

on a railway card (called Suica card) system.

 Processes Injected
faults

 Detected faults by
 Group A

 Detected faults by
 Group B

 S1 S2 S3 S4

Register_Card 23 23 15 10 1

Charge_With_Cash 15 15 5 5 1

Charge_From_Bank 21 21 19 12 1

Buy_With_Card 15 14 5 7 1

Buy_With_Card_Cash 5 5 2 4 1

Entering_Station 24 19 11 10 2

Exiting_Station 34 34 17 23 2

Update_Commute_Ticket 19 17 19 14 4

Total 156(100%) 148(95%) 93(60%) 85(54%) 13(8%)

5. Conclusion

(1)The testing-based specification animation

provides an effective approach to validating

formal specifications. It does not require

transformation from formal specifications to

code.

(2) The test case generation criteria have

proved to be effective for validation in the

small experiment.

(3) The test cases generated for specification

animation can be reused for testing the

implementation.

6. Future Work

 Study more test case generation criteria for

more effective specification animations.

 Study techniques for visualized

demonstration of the input-output relation of a

process, including both data visualization and

functional visualization.

 Improve our current software tools to support

automatic test case generation.

 Conduct more experiments on specifications

of large scale software systems.

 Thank You !

