
1

Undertaking the Tokeneer Challenge in Event-B

Victor Rivera, Sukiriti Bhattacharya, and Nestor Catano

Innopolis University
Technologies and Software Development Institute

Software Engineering Lab.

May 15th, Austin, TX, USA
FormaliSE 2016



2

The Tokeneer Project



3

The Tokeneer project

The Tokeneer ID Station (TIS) is responsible for reading a smart
card (Token) and, based on a number of protocols and checks,
ensuring that any person trying to access the enclave is indeed
permitted to enter the enclave, and giving the corresponding
grants as a user or administrator.



4



5

The Tokeneer project

I It was initiated by the U.S. National Security Agency (NSA)
(2003)

I The main idea: as a demonstrator of highly secure, low
defect, high-assurance software system.

I The NSA commissioned Praxis to re-develop the software for
the Tokeneer ID Station (TIS)



6

The Tokeneer project

I The specification and implementation were completed in 2003
and made publicly available by the NSA and Praxis in October
2008.

I Forming an ideal base for further research in program
verification at both industrial and academic communities.



7

Tokeneer specification/implementation

Praxis specified TIS in Z and implemented and tested it in Ada,
following the System Requirement Specification (SRS) and System
Test Specification (STS) documents (documents also publicly
available).



8

Tokeneer Challenges

Challenge 1: Re-implement Tokeneer

To use different specification languages, programming languages,
verification tools to re-implement Tokeneer.

Challenge 2: Proof of Security Properties

The Tokeneer specification contains 3 security properties. Praxis
presented a full demonstration of one of them and a partial
demonstration to another one: to fully proof all security properties.



8

Tokeneer Challenges

Challenge 1: Re-implement Tokeneer

To use different specification languages, programming languages,
verification tools to re-implement Tokeneer.

Challenge 2: Proof of Security Properties

The Tokeneer specification contains 3 security properties. Praxis
presented a full demonstration of one of them and a partial
demonstration to another one: to fully proof all security properties.



8

Tokeneer Challenges

Challenge 1: Re-implement Tokeneer

To use different specification languages, programming languages,
verification tools to re-implement Tokeneer.

Challenge 2: Proof of Security Properties

The Tokeneer specification contains 3 security properties. Praxis
presented a full demonstration of one of them and a partial
demonstration to another one: to fully proof all security properties.



9

Challenge 1

:
An approach for software development



9

Challenge 1:
An approach for software development



10

Steps

1. To model TIS in Event-B (a formal methods based on
Step-wise Refinement) based on the existing Z specifications
of Tokeneer. This allows the TIS to be described in different
levels of abstraction.

2. To use Rodin (an IDE for Event-B) to verify the Event-B
model of TIS.

3. To use EventB2Java (a tool of Event-B) to generate Java
code for the Event-B model of the TIS.

4. To propagate the requirements in the STS document all the
way down to the JUnit test cases drawn from the generated
Java code, so that upon a test case failure, it is possible to
back-trace the failed requirements to the corresponding parts
in the model.



10

Steps

1. To model TIS in Event-B (a formal methods based on
Step-wise Refinement) based on the existing Z specifications
of Tokeneer. This allows the TIS to be described in different
levels of abstraction.

2. To use Rodin (an IDE for Event-B) to verify the Event-B
model of TIS.

3. To use EventB2Java (a tool of Event-B) to generate Java
code for the Event-B model of the TIS.

4. To propagate the requirements in the STS document all the
way down to the JUnit test cases drawn from the generated
Java code, so that upon a test case failure, it is possible to
back-trace the failed requirements to the corresponding parts
in the model.



10

Steps

1. To model TIS in Event-B (a formal methods based on
Step-wise Refinement) based on the existing Z specifications
of Tokeneer. This allows the TIS to be described in different
levels of abstraction.

2. To use Rodin (an IDE for Event-B) to verify the Event-B
model of TIS.

3. To use EventB2Java (a tool of Event-B) to generate Java
code for the Event-B model of the TIS.

4. To propagate the requirements in the STS document all the
way down to the JUnit test cases drawn from the generated
Java code, so that upon a test case failure, it is possible to
back-trace the failed requirements to the corresponding parts
in the model.



10

Steps

1. To model TIS in Event-B (a formal methods based on
Step-wise Refinement) based on the existing Z specifications
of Tokeneer. This allows the TIS to be described in different
levels of abstraction.

2. To use Rodin (an IDE for Event-B) to verify the Event-B
model of TIS.

3. To use EventB2Java (a tool of Event-B) to generate Java
code for the Event-B model of the TIS.

4. To propagate the requirements in the STS document all the
way down to the JUnit test cases drawn from the generated
Java code, so that upon a test case failure, it is possible to
back-trace the failed requirements to the corresponding parts
in the model.



10

Steps

1. To model TIS in Event-B (a formal methods based on
Step-wise Refinement) based on the existing Z specifications
of Tokeneer. This allows the TIS to be described in different
levels of abstraction.

2. To use Rodin (an IDE for Event-B) to verify the Event-B
model of TIS.

3. To use EventB2Java (a tool of Event-B) to generate Java
code for the Event-B model of the TIS.

4. To propagate the requirements in the STS document all the
way down to the JUnit test cases drawn from the generated
Java code, so that upon a test case failure, it is possible to
back-trace the failed requirements to the corresponding parts
in the model.



11

A brief description of Event-B



12

The Event-B method

Event-B models are complete developments of discrete transition
systems:

I systems go through a series of stages, named refinements.

I each refinement is a description of the system with a higher
level of detail.

I each refinement is provably consistent with the previous one
(the proof obligations).

I Event-B models are composed of contexts (static part) and
machines (dynamic part).



13

Event-B: Rodin

I Rodin platform is an open-source Eclipse IDE for the
development and verification of the Event-B models.

I Rodin automatically generates the set of proof obligations
(PO) necessary to prove consistency of machines.

I Rodin comes with a series of plug-ins that extend its
functionality. For instance:

I AtelierB provers to help users to automatically discharge proof
obligations.

I EventB2java generates Java implementations of Event-B
models.



14

Experimental results



15

Step 1: Event-B model of TIS

TIS Event-B model consists of an Abstract machine and 6
refinements:

Machine LOC
Abstract 43

certificate L1 72

certificate L2 125

entry L1 219

entry L2 264

enrol 213

admin 517

Total 1453

We used the existing Z specification of TIS as a requirement
document.



16

Step 2: Event-B model of TIS – Verification

I Event-B is based on the idea of structuring a development
into many small steps to achieve a high degree of automation.

Machine LOC #POs Aut
Abstract 43 9 100

certificate L1 72 36 88.9

certificate L2 125 58 93.1

entry L1 219 59 88.13

entry L2 264 36 83.3

enrol 213 4 100

admin 517 132 90.9

Total 1453 334 90.1



17

Step 2: Findings

I Our initial Event-B model was inconsistent. We inspected the
model and found and corrected the inconsistencies.

I We were able to achieve a high degree of proof automation in
Rodin (90.1% were discharged automatically using Rodin’s
proof engines).



18

Step 2: Findings

I We gained confidence about our Event-B model: conditions
expressed in the SRS document were formally introduced as
invariants and events in Event-B.

I We were also able to encode and prove all three security
properties of TIS (Challenge 2).

I We were able to prove the soundness of the system w.r.t
those conditions by discharging all POs with Rodin.



19

Step 2: Findings

I However, there is no clear way to be sure that the formal
specifications in Event-B are sound w.r.t. the English
description of the requirements.



20

Step 3: Java implementation of TIS

I Once we finished to model the TIS in Event-B, we used
EventB2Java to generate a Java implementation of the
Event-B model.



21

Step 3: Findings

I EventB2Java automatically generated 2704 lines of Java code.

I The only difficulty we found with the translation is that
EventB2Java does not generate initial values for Event-B
constants in Java.

I Those values were manually set to adhere to axioms written in
Event-B.

I Nevertheless, these initial values are clearly described in the
STS document.



22

Step 4: JUnit testing of the implementation

I We manually wrote executable JUnit tests from the STS
document given by Praxis.

I The document also provides the needed input to the unit
under test and the generated JUnit tests evaluate its output
before assigning any verdict about its success or failure.

I We ran the set of tests against the code with a supplied input
data, then we compared the results obtained against the
expected results. Any mismatch in the result implies that the
model needs to be improved.



23

Step 4: Findings

I The initial Java implementation of the TIS did not pass all
the tests.

I We inspected our Event-B model, found errors, and generated
Java code again.

I We repeated this process until the generated Java code
successfully passed all the tests.

I We are confident about the behaviour of the implementation
since it meets the expectations defined in the STS document.



24

Tokeneer experiment

In applying this approach, users have the following advantages:

i finding inconsistencies in the Event-B model by
I discharging POs and
I performing tests in Java;

ii Event-B refinement chains tend to be short;

iii allows experts from different domains to work together;

iv once the model is correct and behaves correctly, it is ready to be
implemented. This approach ends with an initial Java program.


