
1/16

Introduction Realizability Synthesis from Contracts Future Work

Towards Synthesis from Assume-Guarantee
Contracts involving Infinite Theories:

A Preliminary Report
FormaliSE 2016

Andreas Katis 1 Andrew Gacek 2 Michael W. Whalen 1

1Department of Computer Science and Engineering, University of Minnesota

2Rockwell Collins Advanced Technology Center

May 15, 2016



2/16

Introduction Realizability Synthesis from Contracts Future Work

Outline

1 Introduction
Motivation
Assume-Guarantee Contracts

2 Realizability
Definitions
Algorithm

3 Synthesis from Contracts
Goal
AE-VAL Skolemizer for ∀∃ formulas
Algorithm
Implementation

4 Future Work



3/16

Introduction Realizability Synthesis from Contracts Future Work

Motivation: Solving the Architectural Analysis Problem

Critical embedded systems development

Safety properties for infinite state reactive systems

“Does there exist an implementation for the given requirements?”
“Is the given specification (contract) realizable?”

Previous work: Gacek, Andrew, et al. "Towards realizability checking
of contracts using theories." NASA Formal Methods. Springer
International Publishing, 2015. 173-187.

Current goal: “Can we synthesize implementations from realizable
requirements?”



3/16

Introduction Realizability Synthesis from Contracts Future Work

Motivation: Solving the Architectural Analysis Problem

Critical embedded systems development

Safety properties for infinite state reactive systems

“Does there exist an implementation for the given requirements?”
“Is the given specification (contract) realizable?”

Previous work: Gacek, Andrew, et al. "Towards realizability checking
of contracts using theories." NASA Formal Methods. Springer
International Publishing, 2015. 173-187.

Current goal: “Can we synthesize implementations from realizable
requirements?”



4/16

Introduction Realizability Synthesis from Contracts Future Work

Assume-Guarantee Contracts

?Assumption : 
Guarantee:

Assumptions A: Constraints on the component’s input
Guarantees G : Constraints on the output
Is the Contract (A,G) realizable?

YES
Not realizable if we remove the assumption



4/16

Introduction Realizability Synthesis from Contracts Future Work

Assume-Guarantee Contracts

?Assumption : 
Guarantee:

Assumptions A: Constraints on the component’s input
Guarantees G : Constraints on the output
Is the Contract (A,G) realizable? YES
Not realizable if we remove the assumption



5/16

Introduction Realizability Synthesis from Contracts Future Work

Definitions

Systems are defined in terms of inputs and states, ranged over by
variables i and s.
A symbolic transition system is defined: (I,T )

A contract is a pair (A,G) with
Assumptions A : (state × input)→ bool

Guarantees G :
{
GI : state → bool
GT : (state × input × state)→ bool



6/16

Introduction Realizability Synthesis from Contracts Future Work

Definitions

Definition (Viable)
Viable(s) = ∀i .A(s, i) ⇒ ∃s ′.GT (s, i , s ′) ∧ Viable(s ′)

Definition (Realizable Contract)
∃s.GI(s) ∧ Viable(s)

Definition (Synthesized Implementation)
A synthesized implementation is a witness of the contract’s realizability



7/16

Introduction Realizability Synthesis from Contracts Future Work

Algorithm

Definition (Finite Viability)
A state s is viable for n steps, written Viablen(s) if GT can keep responding to valid
inputs for at least n steps.

∀i1.A(s, i1)⇒ ∃s1.GT (s, i1, s1)∧
∀i2.A(s1, i2)⇒ ∃s2.GT (s1, i2, s2) ∧ . . .∧

∀in.A(sn−1, in)⇒ ∃sn.GT (sn−1, in, sn)

Definition (One-step Extension)
A state s is extendable after n steps, written Extendn(s) if any valid path of length n
from s can be extended in response to any input.

∀i1, s1, . . . , in, sn.

A(s, i1) ∧ GT (s, i1, s1) ∧ . . . ∧ A(sn−1, in) ∧ GT (sn−1, in, sn)⇒
∀i .A(sn, i)⇒ ∃s ′.GT (sn, i , s ′)



8/16

Introduction Realizability Synthesis from Contracts Future Work

Algorithm

Checking Algorithm: Find n such that both checks are true:

BaseCheck(n) = ∃s.GI(s) ∧ Viablen(s)

ExtendCheck(n) = ∀s.Extendn(s)

2n quantifier alternations in BaseCheck
Extremely difficult SMT problem
Solvers fail very quickly

Instead, use an approximation:

BaseCheck ′(n) = ∀k ≤ n.(∀s.GI(s)⇒ Extendk(s))



9/16

Introduction Realizability Synthesis from Contracts Future Work

Goal

Can we effectively use our method to solve the synthesis problem?

Problem: SMT-solvers cannot be used directly (nested quantifiers)

Solution: AE-VAL: Horn-based Skolemizer for ∀∃ formulas
Fedyukovich, Grigory, Arie Gurfinkel, and Natasha
Sharygina."Automated discovery of simulation between programs."
Logic for Programming, Artificial Intelligence, and Reasoning.
Springer Berlin Heidelberg, 2015.



10/16

Introduction Realizability Synthesis from Contracts Future Work

AE-VAL Skolemizer for ∀∃ formulas

S(~x)⇒ ∃~y .T (~x , ~y)
Model Based Projection to extract Skolem relations
Linear Integer Arithmetic



11/16

Introduction Realizability Synthesis from Contracts Future Work

Using AE-VAL for Synthesis

Two separate phases for BaseCheck’ and ExtendCheck

BaseCheck ′(n) = ∀k ≤ n.(∀s.GI(s)⇒ Extendk(s))

ExtendCheck(n) = ∀s.Extendn(s)

Extendn(s) =

∀i1, s1, . . . , in, sn.

A(s, i1) ∧ GT (s, i1, s1) ∧ . . . ∧ A(sn−1, in) ∧ GT (sn−1, in, sn)⇒
∀i .A(sn, i)⇒ ∃s ′.GT (sn, i , s ′)

∀i1, s1, . . . , in, sn, i .
A(s, i1) ∧ GT (s, i1, s1) ∧ . . .∧
A(sn−1, in) ∧ GT (sn−1, in, sn) ∧ A(sn, i)⇒

∃s ′.GT (sn, i , s ′)



12/16

Introduction Realizability Synthesis from Contracts Future Work

Synthesis Algorithm

assign_GI_witness_to_S;
update_array_history;

// Perform bounded ’base check’ synthesis
read_inputs;
base_check’_1_solution;
update_array_history;
...
read_inputs;
base_check’_k_solution;
update_array_history;

// Perform recurrence from ’extends’ check
while(1) {
read_inputs;
extend_check_k_solution;
update_array_history;

}

1 Construct history arrays for
variables in I and S.

2 Initialize variable values (0th
element of array) using GI

3 Initialize history of length k
using BaseCheck’ Skolem
relations

4 Use ExtendCheck’s solution in a
recurrence loop to define the
next-step values



13/16

Introduction Realizability Synthesis from Contracts Future Work

Skolem relation example

ite([&&
$defs__rising_edge~1.Mode_Control_Impl_Instance__signal$0
!($Mode_Control_Impl_Instance__seconds_to_cook$0>=0)
!$defs__initially_true~0.Mode_Control_Impl_Instance__result$0

], [&&
$Mode_Control_Impl_Instance__is_setup$0
$defs__rising_edge~1.Mode_Control_Impl_Instance__re$0
!$Mode_Control_Impl_Instance__is_cooking$0
$defs__rising_edge~1.Mode_Control_Impl_Instance__signal$0
!$_TOTAL_COMP_HIST$0
!$_SYSTEM_ASSUMP_HIST$0
!$Mode_Control_Impl_Instance__is_suspended$0
!$Mode_Control_Impl_Instance__is_running$0
!$defs__rising_edge~0.Mode_Control_Impl_Instance__re$0
!$defs__initially_true~0.Mode_Control_Impl_Instance__b$0
!$defs__initially_true~0.Mode_Control_Impl_Instance__result$0
!$defs__rising_edge~2.Mode_Control_Impl_Instance__re$0
!$defs__rising_edge~2.Mode_Control_Impl_Instance__signal$0

], ite([&&
%init
$_SYS_GUARANTEE_2$0
!($Mode_Control_Impl_Instance__seconds_to_cook$0>=0)
!$defs__rising_edge~1.Mode_Control_Impl_Instance__signal$0
!$defs__initially_true~0.Mode_Control_Impl_Instance__b$0

], ...))

This is only one of the
necessary solutions to
construct the
implementation
900 lines of code
A good intermediate
representation to
retranslate into any
target language



14/16

Introduction Realizability Synthesis from Contracts Future Work

Implementation

OSATE + Assume Guarantee 
Reasoning Environment 

(AGREE)

Jkind Model Checker
(LUSTRE)

Translation

Requirements 
Development

AE-VAL

Skolem Relation
Extraction

Satisfiability
Checks

Realizability / Synthesis 
Algorithms

https://github.com/agacek/jkind

https://github.com/smaccm/
smaccm

https://bitbucket.org/
fedyukovich/ufo-gf.git

https://github.com/Z3Prover/z3

Auxiliary Tools



15/16

Introduction Realizability Synthesis from Contracts Future Work

Future Work

Extend work to Linear Real Arithmetic

Improve transition relation representation

Efficient translation of Lustre data-flow programs to non-minimal
FSMs

Formal verification of algorithm

Improve realizability algorithm using an inductive invariant generation
approach (Property Directed Reachability)

Possible obstacle + Research subject : Mapping infinite to equivalent
finite implementations



16/16

Introduction Realizability Synthesis from Contracts Future Work

Thank You!



17/16

Definition (Reachable with respect to assumptions)
A state of (I,T ) is reachable with respect to A if there exists a path
starting in an initial state and eventually reaching s such that all
transitions are satisfying the assumptions

ReachableA(s) = I(s)∨∃sprev , i . ReachableA(sprev )∧A(sprev , i)∧T (sprev , i , s)

Definition (Realization)
A transition system (I,T ) is a realization of the contract (A, (GI ,GT ))
when the following conditions hold

∀s. I(s)⇒ GI(s)
∀s, i , s ′. ReachableA(s) ∧ A(s, i) ∧ T (s, i , s ′)⇒ GT (s, i , s ′)
∃s. I(s)
∀s, i . ReachableA(s) ∧ A(s, i)⇒ ∃s ′. T (s, i , s ′)


	Introduction
	Motivation
	Assume-Guarantee Contracts

	Realizability
	Definitions
	Algorithm

	Synthesis from Contracts
	Goal
	AE-VAL Skolemizer for  formulas
	Algorithm
	Implementation

	Future Work
	Appendix

