
Teaching Modeling and Variability
in Software Design

and its Importance to Science

Don Batory
Department of Computer Science

University of Texas at Austin
Austin, Texas 78712 1								

Overture
•  My work is in automated software design (ASD)

•  my interests: software product lines (SPLs),
model driven engineering (MDE), refactoring

•  background in systems, not formal methods
•  flavor of my work is to use mathematics to explain what I have observed

and done in practice

2								

from	prac+ce	
	
to	theory	

Heard Lectures by

•  Their work is to find algebraic laws of programming (esp. concurrency)

•  My approach to software automation has this flavor (physics), but is not as formal
•  geared more toward practicing engineers
•  does not preclude others with stronger formal backgrounds to follow up

3	

Tony	Hoare	 Ric	Hehner	Jay	Misra	

Recent Lectures by

•  Their work is to find algebraic laws of programming

•  My approach to software automation has this flavor (physics), but is not as formal
•  geared more to practice and engineering
•  does not preclude others with stronger formal backgrounds to follow up

4	

Jay	Misra	 Tony	Hoare	 Ric	Hehner	

Introduction
•  I teach undergraduate and graduate software design courses

•  Goal is not JUST to present software design as:
•  a collection of best practice techniques and tools to create

understandable and cost-effective designs, but also
•  a foundation to explain classical and revolutionary concepts in last 25 years

5	

Model	Driven	Engineering	
Refactorings	

Design	Pa5erns	
Parallel	Architectures	

Product	Lines	

Motivation #1 For This Talk
•  I attended Software Product Line Conference in Nashville last summer

•  Listened to a keynote of a founder of that Conference Series

•  History and motivation behind the creation of SPLC

•  Software Reuse Conference lacked a
focus on practical, cost-effective technology

•  and “we didn’t have to worry about math”

6	

Not Surprising
•  Historically w.r.t. science, I think Software Design is ~1880s

•  Practice as an art dominated in chemistry
•  Against the tide of the history of science

In	prac<ce,	there	is	no	difference		
between	theory	and	prac<ce.		

	
	In	theory,	there	is.	

7	

The Difference is Obvious
•  View Software Design from

reductionist and mathematical
perspective

•  Only if you’re in the right place

•  At the right time

•  Looking in the right direction

•  You’ll discover something beautiful

8	

A Starting Point
to Teach

Modern Software Design

9								

•  Addition and subtraction of numbers

•  Some operations (multiplication) distribute over addition

𝑅⋅(𝐺+𝐻)=𝑅⋅𝐺+𝑅⋅𝐻

•  Functions 𝐹:ℝ→ℝ

Basic Mathematics

𝐴+𝐵=𝐵+𝐴	
𝐴+(𝐵+𝐶)=(𝐴+𝐵)+𝐶	

𝐴+0=𝐴	identity
commutativity

associativity

not	in	this		
talk…	

10	

Dreaded Homework Assignments
•  Are these expressions equal?

​𝑥↑2 +5⋅𝑥 +6 = (𝑥+3)⋅(𝑥+2)

•  Obviously no! They are different

•  We were taught to apply a series of
identities replace equals with equals to prove
their semantic equality or not

=	(𝑥+3)⋅𝑥+(𝑥+3)⋅2	

(𝑥+3)⋅(𝑥+2)	

=	 ​𝑥↑2 +3⋅𝑥+2⋅𝑥+6	

=	 ​𝑥↑2 +5⋅𝑥+6	

11	

MDE Cosmic View
•  We have a domain of algebraic expressions defined by metamodel 𝔼

•  We have 2 elements: expressions ​𝑒↓1  and ​𝑒↓2 
•  Is there a path proof between ​𝑒↓1  and ​𝑒↓2 using arrows identities

that transforms ​𝑒↓1 into ​𝑒↓2 ?

​𝑒↓1 	
​𝑒↓2 	

𝔼 metamodel of all
algebraic

expressions
cone of

instances

domain of all
algebraic

expressions
𝔼 instances

12	

•  Of course, there can be many paths derivations
•  Can derive a large number of semantically equivalent expressions

•  Yields a subdomain of “equivalent expressions”
•  A common source of variability in mathematics that we don’t think about
•  You might say some expressions are better than others. More later…

MDE Cosmic View

​𝑒↓1 	
​𝑒↓2 	

𝔼	 metamodel of all
expressions

cone of
instances

domain of all
𝔼 instances

13	

Incremental Software Design
•  Is a classical way to control software complexity

•  Hallmark of Agile approaches, like XP

•  Goal of Automated Software Design is to automate all or some the common
arrows/transformations of software design

•  “all” is more likely in domain-specific applications
•  “some” expected in generic applications, like refactorings

​
𝑃↓
0 	

​
𝑃↓
1 	

​𝜏↓1 	 ​
𝑃↓
2 	

​𝜏↓2 	 ​
𝑃↓
3 	

​𝜏↓3 	

14	

Automated Software Design
•  Programs are graphs

Parse		
Trees	

Class	
Diagrams	

Data	Flow	

15	

•  Deals with the addition and subtraction of graphs, not numbers, w. similar properties

•  Some operations distribute over addition: make graph 𝑅ed ed

𝑅⋅(𝐺+𝐻)=𝑅⋅𝐺+𝑅⋅𝐻

•  Functions 𝐹:𝔾→𝔾

Automated Software Design

𝐴+𝐵=𝐵+𝐴	
𝐴+(𝐵+𝐶)=(𝐴+𝐵)+𝐶	

𝐴+0=𝐴	iden+ty	
commuta+vity	

associa+vity	

not	in	this	
talk!	

16	

Make This Concrete!
•  Start with UML class diagrams 𝛿+𝛾=ϕ

𝛾= 	

𝜙= 	

𝛿= 	 -x
-y
-

A

-r
-
-

B
-in

1

-contains

*

+	is	a	union-like		op	
that	has	an	iden+ty	0,	
is	commuta+ve	and		

associa+ve	

–	is	a	set	subtrac+on	
opera+on	 17	

CUTE

18	

CUTE
BUT SO WHAT?

How Would You Explain
•  A typical spaghetti class diagram to someone?

Customer Receipt

ContractCarRentalCompany

RentalCar

*

*

*

1 -paid

*1

0..1

1

*

1

-belongsTo1

-owns*

*1

19	

Using Graph Addition
•  Build graph incrementally by adding subgraphs to a simple base graph

•  Each step is understandable, implementable, and testable!
20	

Explain	
Complexity	
in	a	Simple	

Way	

Customer

Car Rental CompanyCar Rental Company

Customer

*

*

Rental Car

Car Rental Company

Customer

Rental Car

*

*

-belongsTo1

-owns*

ContractCar Rental Company Contract

Customer

Rental Car

*

*

-belongsTo1

-owns*

1 *

*

1

1

1

Car Rental Company Contract

Customer Receipt

Rental Car

*

*

-belongsTo1

-owns*

1 *

*

1

1

1

1

-paid

*

0..1

1

No Unique Way to Construct Diagram

•  Consequence of commutativity and associativity of graph addition

•  Math confirms the intuitive: one can create a design in any number
of equivalent ways – more later…

21	

Car Rental Company

Rental Car

-belongsTo1

-owns*

Car Rental Company

Customer

Rental Car

*

*

-belongsTo1

-owns*

ContractContract

Customer Receipt

1

-paid

*

0..1

1

Car Rental Company Contract

Customer Receipt

Rental Car

*

*

-belongsTo1

-owns*

1 *

*

1

1

1

1

-paid

*

0..1

1

CUTE

22	

CUTE
BUT WHO CARES?

A B

C D

*

0..1

*

0..1

Each	A	is	connected	to	exactly	1	C	or	1	D,
Never	both

A B

C D

1*

Graph Identities
often presented as Refactorings

•  Push down association

•  Refactorings are reversible (equalities)
•  Lots of these identities – see more later…

23	

MDE Universe
•  Metamodel ℂ𝔻 whose domain is class diagrams

•  Given two class diagrams, ​𝑐↓1 and ​𝑐↓2 , does ​𝑐↓1 = ​𝑐↓2 ?
•  Can we apply a set of graph identities to prove their equivalence?

•  Let’s a look at an example

​𝑐↓1 	
​𝑐↓2 	

ℂ𝔻 metamodel of all
class diagrams

cone of
instances

domain of all
class diagrams

24	

Motivation #2 for this Talk
•  “Abstraction Challenges” Panel at MODELS 2013

•  I posed a question: if I give a modeling assignment** to my class…

** create a class diagram to express …

•  Response caught me off-guard
•  if panelists said anything it was “but there is only one right answer”

25	

Guess: Common
Interpretation

•  Example from Davide Di Ruscio
clarified a common interpretation

–  What is a class diagram of a class
diagram?

a)  allows classes to have attributes
and directed associations

b)  answer (a) + class hierarchies

c)  answer (b) + pull-up common
attributes name

thank	you	
Davide!	

26	

Teaching Databases Mid-1980s
•  I noticed the same problems

•  unless you are very specific about what you want students to model,
you will get a zoo answers

•  I graded the same way as Davide…

•  Decades later, in teaching Software Design, I took a broader perspective,
I realized I needed to tighten the problem spec to reduce the zoo of answers

27	

Where I Start Now
•  What is a class diagram of a class

diagram?

•  Here is my in-class answer:

•  For MDE purists,
this CD is an instance of itself

-name

Box

-name

Box

-name
-visibility?

Attribute

-attrOf1

-hasAttr*

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-name

Box

-name
-visibility?

Attribute

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-endsAt

1

-connectsTo

*

-attrOf1

-hasAttr*

28	

The Assignment
•  Given this metamodel, what minimal

change do you need to make to
generalize it to express inheritance
relationships among classes?

•  And I get all sorts of answers…

-name

Box

-name
-visibility?

Attribute

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-endsAt

1

-connectsTo

*

-attrOf1

-hasAttr*

29	

Answers #1 and #2
•  The left answer is my answer + constraint that there are no inheritance cycles not shown

-name

Box

-name
-visibility?

Attribute

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-endsAt

1

-connectsTo

*

-attrOf1

-hasAttr*

-sub *

-super

0..1

let’s	hope	we	agree	on	cardinality	
labeling,	as	it	is	non-standard.	

I	use	Booch	et	al.	UML	conven+on	

-name

Box

-name
-visibility?

Attribute

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-endsAt

1

-connectsTo

*

-attrOf1

-hasAttr*

inheritancePair

1-sub

*

1
-super 0..1

30	

•  A standard rewrite of database design circa mid-1980s called “normalize” association

•  And, of course, the rename refactoring which asserts “X” equals “Y”

A B-End1

*

-End2

* ABPair

A B

1
-End2

*

1

-End1

*

Graph Identities Known Beforehand
a.k.a. Refactorings

X Y

31	

A B-End1

*

-End2

* ABPair

A B

1
-End2

*

1

-End1

*

•  A standard rewrite of database design circa mid-1980s called “normalize” association

•  Special case where A = B

AAPair

A

1-End1

*

1
-End2 *

Graph Identities Known Beforehand
a.k.a. Refactorings

B

32	

B

ABPair

A

A

A

-End1 *

-End2

*

So Let’s Derive their Equivalence

•  Of course, the right diagram is more verbose than the left, but they are equivalent
•  They don’t get equivalent grades because the right CD is not minimal

-name

Box

-sub *

-super

0..1
-name

Box

BoxBoxPair

1-sub

*

1
-super 0..1

normalize	

equals	

-name

Box

inheritancePair

1-sub

*

1
-super 0..1

33	

Here’s Another Student Answer

•  Constraint on both diagrams: no box can have multiple super classes,
no inheritance cycles, …

inheritancePair

1-sub

*

-name

Box

-name
-visibility?

Attribute

-attrOf1

-hasAttr*

1
-super 0..1

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-endsAt

1

-connectsTo

*

-name

Box

-name
-visibility?

Attribute

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-endsAt

1

-connectsTo

*

-attrOf1

-hasAttr*

Inheritance

-diamondEnd?

InheritEnd

1

2

1

*

34	

normalize

Box

InheritancePair Super

Sub

1

1

1 1

1

-sub

*

1

-super 0..1

normalize

Box

InheritancePair Super

1 1

1

-sub *

1

-super 0..1

Box

1-super

0..1

1
-sub *

InheritancePair

Again Use Normalization

35	

equals

Each	InheritancePair	has	precisely	1	“super”	End
and	1	“sub”	end

Box

InheritancePair

1*

1

2

-super?

SuperSub
Box

InheritancePair Super

Sub

1

1

1 1

1

-sub

*

1

-super 0..1

Next…

36	

Super

Each	InheritancePair	has	precisely	1	“super”	End
and	1	“sub”	end

Box

InheritancePair

1*

1

2

-super?

SuperSub

Each	Inheritance	has	precisely	1	“super”	InheritEnd
No	class	has	2+	“super”	SuperEnds

Box

-super?

InheritEnd

1

*

1

2

Inheritance

inheritancePair

1-sub

*

-name

Box1
-super 0..1

Last Step

37	Each	Inheritance	has	precisely	1	“super”	InheritEnd
And	1	“sub”	InheritEnd

Each	InheritancePair	has	precisely	1	“super”	End
and	1	“sub”	end

Box

InheritancePair

1*

1

2

-super?

InheritEnd

equals

Big Picture
•  Graph refactorings are Graph identities

•  We should be teaching is the
mathematics of software design –
this is the Science of Design

•  Variations in designs are explained by
the application of graph identities

•  Interesting assignments for students to
think about what identities they need to
grade each other’s answers

𝑚	
𝑠	

ℂ𝔻	

metamodel	of	all	
class	diagrams	

Cone	of		
Instances	

domain	of	all		
ℂ𝔻	instances	

38	

CUTE

39	

CUTE
BUT ENGINEERS DON’T

 NEED THIS…

CUTE

Really???

40	

Really???

41	

•  It is the cooperation of theory and experiments
•  experiments give observational data
•  theory distills seemingly unrelated observations into a system of laws

•  Go back in time to see the origins of Automated Software Design (ASD)

Science is Everything in ASD

42	

In ~1986, Keys to the Future of
Software Development

•  Paradigms of the future must embrace at least:

•  Compositional Programming
–  develop software by composing “modules” (not writing code)

•  Generative Programming
–  want software development to be automated

•  Domain-Specific Languages (DSLs)
–  not C or C++, use domain-specific notations

•  Automatic Programming
–  declarative specs → efficient programs

•  Verification
–  want our programs to be correct

•  Need simultaneous advance in all fronts to make a significant impact
43	

Yeh, Right

•  But … an example of this futuristic paradigm realized 7 years earlier (1979)
around time when many AI researchers gave up on automatic programming

•  IMO – most significant result in ASD and automated construction. Period.

•  Rarely mentioned in typical texts and research papers in SE, software design,
modularity, product lines, DSLs, MDE, software architectures…

Selinger	ACM	
SIGMOD	79	

44	

Relational Query Optimization (RQO)

SQL	
select	

statement	

parser	

inefficient	
rela<onal	
algebra	

expression	

op<mizer	

efficient	
rela<onal	
algebra	

expression	

declara<ve		
domain-specific		

language	

automa<c	
programming	

code	
generator	

efficient		
program	genera<ve	

programming	

composi<onal	
programming	

correct-by-construc<on	
(see	this	later)	

45	

What RQO Did
•  Started with a simple relational algebra expression ​𝑒↓1  derived from SQL SELECT
•  Applying algebraic identities, created a subdomain of equivalent expressions, incl ​𝑒↓2 
•  Ranked expressions by efficiency and chose the cheapest, ex: ​𝑒↓2 
•  That’s the implementation of the SQL SELECT to use

​𝑒↓1 	

ℝ𝔼	 metamodel of all
relational algebra

expressions
cone of

instances

domain of all
relational algebra

expressions

​𝑒↓2 	

46	

Keys to RQO Success
•  Automated development of query evaluation programs

•  hard-to-write, hard-to-optimize, hard-to-maintain
•  revolutionized and simplified database usage

•  Based on algebra of tables (not numbers)
•  different table expressions represented different programs

•  Program designs / expressions can be optimized automatically
•  key is finding relational algebra identities

•  Gave me a framework about how to think about ASD

47	

NICE
 SHOW ME SOMETHING USEFUL

48	

Really??
•  Revolutionizing database management was not useful?

•  While you think about an answer,
 let me show others this example about dataflow applications…

49	

•  This spaghetti diagram: it is a dataflow graph of a fundamental parallel hash join
algorithm, similar to what is used in database machines today

•  To explain & derive it, you need data flow graph identities

How Do You Explain…

50	

B HSPLIT

BFILTER

BFILTER
...B1

Bn

A⋈BMERGE

HJOIN

HJOIN

...

A1⋈B1

An⋈Bn

A HSPLIT

BLOOM

BLOOM

...
A1

An

HJOIN

DeWib,	et	al.		
IEEE	TKDE	1990	

•  Need 2 identities that are well-known to database researchers but few others

•  Bloom filters remove tuples from stream B that provably cannot join with stream A

•  Parallelize HJOIN operation via map-reduce:

Simple Way To Derive Gamma

51	

HJOINA
B

A⋈B

bloom	
filter	

A

B

A⋈B
BLOOM

BFILTER
HJOIN

HJOIN

map	
reduce	

HJOIN

B
A⋈B

A

HSPLIT
MERGE

HJOIN

HJOIN

...
B1
Bn

A1⋈B1

An⋈Bn

HSPLIT A1
An

HJOINA
B

A⋈B

HJOINA
B

A⋈B

Derivation of Gamma

HJOIN

B

A⋈B

A

HSPLIT

MERGE...

B1
Bn

A1⋈B1

An⋈Bn

HSPLIT
A1

An

BLOOM

BFILTER
HJOIN

HJOIN

BLOOM

BFILTER
HJOIN

bloom	
filter	

52	

HJOIN

B
A⋈B

A

HSPLIT
MERGE

HJOIN

HJOIN

...
B1
Bn

A1⋈B1

An⋈Bn

HSPLIT A1
An

map	
reduce	

HJOIN

B

A⋈B

A

HSPLIT

MERGE...

B1
Bn

A1⋈B1

An⋈Bn

HSPLIT
A1

An

BLOOM

BFILTER
HJOIN

HJOIN

BLOOM

BFILTER
HJOIN

Derivation of Gamma

53	

graph	
rearrangement	

B HSPLIT

BFILTER

BFILTER
...B1

Bn

A⋈BMERGE

HJOIN

HJOIN

...

A1⋈B1

An⋈Bn

A HSPLIT

BLOOM

BLOOM

...
A1

An

HJOIN

HJOINA
B

A⋈B

Design is Correct By Construction
•  Initial graph is correct

•  Rewrites are correct

•  End result is correct

54	

HJOINA
B

A⋈B

bloom	
filter	

A

B

A⋈B
BLOOM

BFILTER
HJOIN

HJOIN

map	
reduce	

HJOIN

B
A⋈B

A

HSPLIT
MERGE

HJOIN

HJOIN

...
B1
Bn

A1⋈B1

An⋈Bn

HSPLIT A1
An

HJOINA
B

A⋈B

B HSPLIT

BFILTER

BFILTER
...B1

Bn

A⋈BMERGE

HJOIN

HJOIN

...

A1⋈B1

An⋈Bn

A HSPLIT

BLOOM

BLOOM

...
A1

An

HJOIN

A

B

A⋈B
BLOOM

BFILTER
HJOIN

HJOIN

HJOINA
B

A⋈B

Remember!
•  There are many ways to derive the same graph

•  simple exploration of this space reveals other fundamental identities

bloom	
filter	

B HSPLIT

MERGEBFILTER

BFILTER

...
B1

Bn

B’1

B’n

M1

HJOIN

HSPLIT

MERGEHJOIN

HJOIN

...

A1 B’1

An B’n

HSPLIT

BLOOM

A
M

HSPLIT

MERGEBLOOM

BLOOM MMERGE

...

A1

An

A1

An

HJOIN

BFILTER

MSPLIT

M1

Mn

A*B

B’

map	
reduce	

55	

Identity Optimizations
•  Merge tuple streams ​𝐴↓1 …​𝐴↓𝑛  into A and then reconstitute them

•  Merge bitmaps ​𝑀↓1 …​𝑀↓𝑛  into a single bitmap 𝑀 and recreate bitmaps ​𝑀↓1 …​
𝑀↓𝑛 

op+mize	

op+mize	

56	

MERGE HSPLITA
A1

An

A1

An

A1

An

A1

An

MMERGE MSPLITM
M1

Mn

M1

Mn

M1

Mn

M1

Mn

op+mize	

B HSPLIT

BFILTER

BFILTER
...B1

Bn

A⋈BMERGE

HJOIN

HJOIN

...

A1⋈B1

An⋈Bn

A HSPLIT

BLOOM

BLOOM

...
A1

An

HJOIN

Derivation

B HSPLIT

MERGEBFILTER

BFILTER

...
B1

Bn

B’1

B’n

M1

HJOIN

HSPLIT

MERGEHJOIN

HJOIN

...

A1 B’1

An B’n

HSPLIT

BLOOM

A
M

HSPLIT

MERGEBLOOM

BLOOM MMERGE

...

A1

An

A1

An

HJOIN

BFILTER

MSPLIT

M1

Mn

A*B

B’

57	

This	is	another	
way	to	discover	
graph	iden++es.	

TOO FANCY FOR ME;
I PREFER MY WAY

58	

DON

I Understand…
•  That’s exactly what Chemists said in the 1880s…

•  but this will change and will take time…
•  if it were easy, would have been done years ago

59	

Let	me	show	
you	a	difference	
between	manual	

sofware	development	
and	automated	
design	in	another	
fundamental	
area	of	CS	

Dense Linear Algebra (DLA)
•  Robert van de Geijn

•  last 30 years creating elegant mathematically
layered designs of DLA computations

•  Jack Paulson created Elemental Distributed DLA package
•  standard BLAS3 matrix-matrix operations
•  solvers
•  decomposition functions (Cholesky factorization)
•  eigenvalue problems

•  Bryan Marker mechanized the above work as application
 of dataflow identities
•  DxTer name of his tool

60	

What DxTer Does
•  Starts with a simple DLA dataflow graph ​𝑔↓1  specified by library designer or DLA

user
•  Applies algebraic identities & creates a subdomain of equivalent graphs, incl ​𝑔↓2 
•  Ranks graphs by their estimated efficiency and choses the cheapest, ex: ​𝑔↓2 
•  That’s the implementation that is translated to code

​𝑔↓1 	

𝔻𝔽	 metamodel of
data flow graphs

cone of
instances

domain of all
data flow graphs

​𝑔↓2 	

61	

Performance Results

•  DxTer automatically generated & optimized Elemental code for BLAS3 and
Cholesky operations

•  Benchmarked with manually-written ScaLAPACK
•  vendors standard option for distributed memory machines;

auto-tuned or manually-tuned
•  only alternative available for target machines

Machine	 #	of	Cores	 Peak	
Performance	

Argonne’s	BlueGene/P	(Intrepid)	 8,192	 27+	TFLOPS	
Texas	Advanced	Compu+ng	Center	

(Lonestar)	
240	 3.2	TFLOPS	

62	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	
Ge

m
m
	N
N
	

Ge
m
m
	N
T	

Ge
m
m
	T
N
	

Ge
m
m
	T
T	

Sy
m
m
	L
L	

Sy
m
m
	R
L	

Sy
m
m
	L
U
	

Sy
m
m
	R
U
	

Sy
r2
k	
LN

	
Sy
r2
k	
LT
	

Sy
r2
k	
U
N
	

Sy
r2
k	
U
T	

Sy
rk
	L
N
	

Sy
rk
	L
T	

Sy
rk
	U
N
	

Sy
rk
	U
T	

Tr
m
m
	L
LN

N
	

Tr
m
m
	R
LN

N
	

Tr
m
m
	L
LT
N
	

Tr
m
m
	L
U
N
N
	

Tr
sm

	L
LN

N
	

Tr
sm

	R
LN

N
	

Tr
sm

	L
LT
N
	

Tr
sm

	L
U
N
N
	

Pe
rf
or
m
an

ce
	(G

FL
O
PS
)	 ScaLAPACK	

DxTer	

BLAS3 Performance on Intrepid

63	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	
Ge

m
m
	N
N
	

Ge
m
m
	N
T	

Ge
m
m
	T
N
	

Ge
m
m
	T
T	

Sy
m
m
	L
L	

Sy
m
m
	R
L	

Sy
m
m
	L
U
	

Sy
m
m
	R
U
	

Sy
r2
k	
LN

	
Sy
r2
k	
LT
	

Sy
r2
k	
U
N
	

Sy
r2
k	
U
T	

Sy
rk
	L
N
	

Sy
rk
	L
T	

Sy
rk
	U
N
	

Sy
rk
	U
T	

Tr
m
m
	L
LN

N
	

Tr
m
m
	R
LN

N
	

Tr
m
m
	L
LT
N
	

Tr
m
m
	L
U
N
N
	

Tr
sm

	L
LN

N
	

Tr
sm

	R
LN

N
	

Tr
sm

	L
LT
N
	

Tr
sm

	L
U
N
N
	

Pe
rf
or
m
an

ce
	(G

FL
O
PS
)	 ScaLAPACK	

DxTer	

BLAS3 Performance on Intrepid

64	

Bryan Found
•  Error(s) in Elemental Library

•  Instances where the Domain Expert Jack forgot to apply an optimization

•  Or used the wrong algorithm (performance error)

65	

What is Really Important…
•  New hardware architectures are invented every year

•  DLA algorithms that are optimized for 1 architecture are not optimized for another…

•  Porting DLA libraries either
•  runs slower than optimal – which is costly
•  rewrite much from scratch – which is costly

66	

Next Stop – Tensors!
•  Tensor

•  n – dimensional array

•  Tensor Contraction
•  generalization of matrix

multiplication

•  Tensors = matrices on steroids

•  Based on ROTE Library of Martin Schatz

67	

Next Stop
•  Generalized computations

to tensor equations in
Computational Chemistry

•  Here are the CCSD
coupled cluster single double
equations for accurate
reproduction of experimental
results on electron correlation
for molecules

•  Bryan & Martin created a
dataflow graph of these
equations and DxTer
to optimize their
implementation

68	

Next Step
•  Generalized computations

to tensor equations in
Computational Chemistry

•  Here are the CCSD
coupled cluster single double
equations for accurate
reproduction of experimental
results on electron correlation
for molecules

•  Marker created a dataflow
graph of these equations
and DxTer to optimize their
implementation

69	

𝟏 ​𝟎↑𝟐𝟐 

State of the Art
•  Contestant: CTF – Cyclops Tensor Framework

•  state-of-the art distributed library for tensor computations
•  performs one contraction (tensor multiply) at a time
•  chooses among different algorithms

•  Machine: Benchmark on BlueGene/Q
•  16 shared-memory cores of IBM’s 64-bit Power A2 architecture @ 1600MHz
•  each node has 16 GB of memory
•  ran CCSD on 256 of these nodes, for a total of 4096 cores

70	

Performance of Full CCSD
on 4096 cores, ¼ peak on top

approx	1.4x	
faster	

approx	1.3x	
larger	

problems	

71	

This is
good!

Performance of Full CCSD
on 4096 cores, ¼ peak on top

approx	1.4x	
faster	

approx	1.3x	
larger	

problems	

72	

This I
is good!

73	

DON,
I DON’T WANT TO WORRY
ABOUT MATH

74	

DON,

J

30 Years Ago
•  This leap forward could not have been done or would not believable

•  simply didn’t have the “observational” data to propel us forward
•  each “experiment” to derive programs from graph identities took ~4 years
•  had to look at several domains to see the commonalities → more years
•  took years to bring the pieces together → doesn’t happen over night

•  And this is Hard: If there is anything I’ve learned from programming and my career:

75	

And If You Do It Right…
•  You will know you are successful when people ask…

•  Here, in summary, are my take-away ideas…

76	

Finding Domain-Specific Identities

•  Is a fundamental activity in Science, like Physics

𝐸=𝑚​𝑐↑2 	

𝐹=𝑚𝑎= ​𝑑𝒑/𝑑𝑡 
	 𝐹=𝐺​​𝑚↓1 ​𝑚↓2 /​𝑑↑2  	

𝚤ℏΨ(𝒓,𝑡)=− ​​ℏ↑2 /2𝑚  ​𝛻↑2 Ψ(𝒓,𝑡)+𝑉(𝒓,𝑡)Ψ(𝒓,𝑡)	

​𝜎↓𝑥 ​𝜎↓𝑦  ≥ ​ℏ/2 	

77	

Finding Domain-Specific Identities

•  Is a fundamental activity in Science, like Physics

𝐸=𝑚​𝑐↑2 	

𝐹=𝑚𝑎= ​𝑑𝒑/𝑑𝑡 
	 𝐹=𝐺​​𝑚↓1 ​𝑚↓2 /​𝑑↑2  	

𝚤ℏΨ(𝒓,𝑡)=− ​​ℏ↑2 /2𝑚  ​𝛻↑2 Ψ(𝒓,𝑡)+𝑉(𝒓,𝑡)Ψ(𝒓,𝑡)	

​𝜎↓𝑥 ​𝜎↓𝑦  ≥ ​ℏ/2 	

78	

Finding Domain-Specific Identities

•  Is also a fundamental activity in Automated Software Design

79	

A

B

-End1

0..*

-End2

*

ABPair

A

B

1

-End2

*
1

-End1

0..*

A

B

C

D
1

*

A

B

C

D
*

0..1

* 0..1

Eac
h	A

	is	c
onn

ect
ed	
to	e

xac
tly	
one

	C	o
r	D
	

A

-End1 0..*

-End2

*

A

AAPair

1-End1

0..*

1
-End2 *

A

B

A*B

BLOOM

BFILTER

HJOIN

HJOIN

HJOINA
B

A*B

HJOINA
B

A*B

HJOIN

B
A*B

A

HSPLIT
MERGE

HJOIN

HJOIN

...
B1
Bn

A1*B1

An*Bn

HSPLIT A1
An

A1

An
A1

An

MERGE HSPLIT
A

A1

An
A1

An
identity

X Y

Finding Domain-Specific Identities

•  Is also a fundamental activity in Automated Software Design

80	

A

B

-End1

0..*

-End2

*

ABPair

A

B

1

-End2

*
1

-End1

0..*

A

B

C

D
1

*

A

B

C

D
*

0..1

* 0..1

Eac
h	A

	is	c
onn

ect
ed	
to	e

xac
tly	
one

	C	o
r	D
	

A

-End1 0..*

-End2

*

A

AAPair

1-End1

0..*

1
-End2 *

A

B

A*B

BLOOM

BFILTER

HJOIN

HJOIN

HJOINA
B

A*B

HJOINA
B

A*B

HJOIN

B
A*B

A

HSPLIT
MERGE

HJOIN

HJOIN

...
B1
Bn

A1*B1

An*Bn

HSPLIT A1
An

A1

An
A1

An

MERGE HSPLIT
A

A1

An
A1

An
identity

X Y

Teaching Math in
Software Design is Important

•  Foundation of Science

•  Shows algebraic foundations of advances in last 25 years in Software Design:

81	

Model	Driven	Engineering	
Refactorings	

Design	Pa5erns	
Parallel	Architectures	

Product	Lines	

Remember History of Science
•  Greatest technical advances in last century were via science

•  It will be no difference for software design

•  It is now time to prepare our students for the future, not to continue the past

82	Thank	You!	

Even	if	you	
are	a	dog…	

J	

