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Overture 
•  My work is in automated software design (ASD) 

•  my interests: software product lines (SPLs),  
model driven engineering (MDE), refactoring 

•  background in systems, not formal methods  
•  flavor of my work is to use mathematics to explain what I have observed 

and done in practice 
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from	prac+ce	
	
to	theory	



Heard Lectures by 

•  Their work is to find algebraic laws of programming (esp. concurrency) 

•  My approach to software automation has this flavor (physics), but is not as formal 
•  geared more toward practicing engineers 
•  does not preclude others with stronger formal backgrounds to follow up 
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Recent Lectures by 

•  Their work is to find algebraic laws of programming 

•  My approach to software automation has this flavor (physics), but is not as formal 
•  geared more to practice and engineering 
•  does not preclude others with stronger formal backgrounds to follow up 
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Introduction 
•  I teach undergraduate and graduate software design courses   

•  Goal is not JUST to present software design as: 
•  a collection of best practice techniques and tools to create 

understandable and cost-effective designs, but also 
•  a foundation to explain classical and revolutionary concepts in last 25 years 
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Model	Driven	Engineering	
Refactorings	

Design	Pa5erns	
Parallel	Architectures	

Product	Lines	



Motivation #1 For This Talk 
•  I attended Software Product Line Conference in Nashville last summer 

•  Listened to a keynote of a founder of that Conference Series 

•  History and motivation behind the creation of SPLC  

•  Software Reuse Conference lacked a 
focus on practical, cost-effective technology  

•  and “we didn’t have to worry about math”  
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Not Surprising 
•  Historically w.r.t. science, I think Software Design is ~1880s 

 
•  Practice as an art dominated in chemistry  
•  Against the tide of the history of science 

In	prac<ce,	there	is	no	difference		
between	theory	and	prac<ce.		

	
	In	theory,	there	is.	
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The Difference is Obvious 
•  View Software Design from 

reductionist and mathematical 
perspective 

•  Only if you’re in the right place 

•  At the right time  

•  Looking in the right direction 

•  You’ll discover something beautiful 
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A Starting Point  
to Teach  

Modern Software Design 
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•  Addition and subtraction of numbers 

 
 
•  Some operations (multiplication) distribute over addition 

𝑅⋅(𝐺+𝐻)=𝑅⋅𝐺+𝑅⋅𝐻 
 
•  Functions                                     𝐹:ℝ→ℝ 

Basic Mathematics 

𝐴+𝐵=𝐵+𝐴	
𝐴+(𝐵+𝐶)=(𝐴+𝐵)+𝐶	

𝐴+0=𝐴	identity 
commutativity 

associativity 

not	in	this		
talk…	
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Dreaded Homework Assignments 
•  Are these expressions equal? 
 
​𝑥↑2 +5⋅𝑥 +6 =  (𝑥+3)⋅(𝑥+2) 
 
•  Obviously no!  They are different  

•  We were taught to apply a series of 
identities replace equals with equals  to prove 
their semantic equality or not 

=	(𝑥+3)⋅𝑥+(𝑥+3)⋅2	

(𝑥+3)⋅(𝑥+2)	

=	 ​𝑥↑2 +3⋅𝑥+2⋅𝑥+6	

=	 ​𝑥↑2 +5⋅𝑥+6	
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MDE Cosmic View  
•  We have a domain of algebraic expressions defined by metamodel 𝔼 

 
 
•  We have 2 elements: expressions ​𝑒↓1  and ​𝑒↓2  
•  Is there a path proof between ​𝑒↓1  and ​𝑒↓2 using arrows identities  

that transforms ​𝑒↓1 into ​𝑒↓2 ?  

​𝑒↓1 	
​𝑒↓2 	

𝔼 metamodel of all 
algebraic  

expressions 
cone of  

instances 

domain of all  
algebraic  

expressions 
𝔼 instances 
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•  Of course, there can be many paths derivations  
•  Can derive a large number of semantically equivalent expressions 

 
 

•  Yields a subdomain of “equivalent expressions”  
•  A common source of variability in mathematics that we don’t think about 
•  You might say some expressions are better than others.  More later… 

MDE Cosmic View  

​𝑒↓1 	
​𝑒↓2 	

𝔼	 metamodel of all 
expressions 

cone of  
instances 

domain of all  
𝔼 instances 
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Incremental Software Design 
•  Is a classical way to control software complexity 

•  Hallmark of Agile approaches, like XP 

•  Goal of Automated Software Design is to automate all or some the common 
arrows/transformations of software design 

•  “all” is more likely in domain-specific applications 
•  “some” expected in generic applications, like refactorings 

​
𝑃↓
0 	

​
𝑃↓
1 	

​𝜏↓1 	 ​
𝑃↓
2 	

​𝜏↓2 	 ​
𝑃↓
3 	

​𝜏↓3 	
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Automated Software Design 
•  Programs are graphs 

Parse		
Trees	

Class	
Diagrams	

Data	Flow	
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•  Deals with the addition and subtraction of graphs, not numbers, w. similar properties 

 
 

•  Some operations distribute over addition: make graph 𝑅ed ed 

𝑅⋅(𝐺+𝐻)=𝑅⋅𝐺+𝑅⋅𝐻 
 
•  Functions                                     𝐹:𝔾→𝔾 

Automated Software Design 

𝐴+𝐵=𝐵+𝐴	
𝐴+(𝐵+𝐶)=(𝐴+𝐵)+𝐶	

𝐴+0=𝐴	iden+ty	
commuta+vity	

associa+vity	

not	in	this	
talk!	
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Make This Concrete! 
•  Start with UML class diagrams  𝛿+𝛾=ϕ 

𝛾= 	

𝜙= 	

𝛿= 	 -x
-y
-

A

-r
-
-

B
-in

1

-contains

*

+	is	a	union-like		op	
that	has	an	iden+ty	0,	
is	commuta+ve	and		

associa+ve	

–	is	a	set	subtrac+on	
opera+on	 17	



CUTE 
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CUTE 
BUT SO WHAT? 



How Would You Explain  
•  A typical spaghetti class diagram to someone? 

Customer Receipt

ContractCarRentalCompany

RentalCar

*

*

*

1 -paid

*1

0..1

1

*

1

-belongsTo1

-owns*

*1
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Using Graph Addition 
•  Build graph incrementally by adding subgraphs to a simple base graph 

•  Each step is understandable, implementable, and testable! 
20	

Explain	
Complexity	
in	a	Simple	

Way	

Customer

Car Rental CompanyCar Rental Company

Customer

*

*

Rental Car

Car Rental Company

Customer

Rental Car

*

*

-belongsTo1

-owns*

ContractCar Rental Company Contract

Customer

Rental Car

*

*

-belongsTo1

-owns*

1 *

*

1

1

1

Car Rental Company Contract

Customer Receipt

Rental Car

*

*

-belongsTo1

-owns*

1 *

*

1

1

1

1

-paid

*

0..1

1



No Unique Way to Construct Diagram 

•  Consequence of commutativity and associativity of graph addition 

•  Math confirms the intuitive: one can create a design in any number  
of equivalent ways – more later… 
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Car Rental Company

Rental Car

-belongsTo1

-owns*

Car Rental Company

Customer

Rental Car

*

*

-belongsTo1

-owns*

ContractContract

Customer Receipt

1

-paid

*

0..1

1

Car Rental Company Contract

Customer Receipt

Rental Car

*

*

-belongsTo1

-owns*

1 *

*

1

1

1

1

-paid

*

0..1

1



CUTE 
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CUTE 
BUT WHO CARES? 



A B

C D

*

0..1

*

0..1

Each	A	is	connected	to	exactly	1	C	or	1	D,
Never	both

A B

C D

1*

Graph Identities 
often presented as Refactorings 

•  Push down association 

 
•  Refactorings are reversible (equalities) 
•  Lots of these identities – see more later… 
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MDE Universe 
•  Metamodel ℂ𝔻 whose domain is class diagrams  

•  Given two class diagrams, ​𝑐↓1 and ​𝑐↓2 , does ​𝑐↓1 = ​𝑐↓2 ? 
•  Can we apply a set of graph identities to prove their equivalence? 

•  Let’s a look at an example 

​𝑐↓1 	
​𝑐↓2 	

ℂ𝔻 metamodel of all 
class diagrams 

cone of  
instances 

domain of all  
class diagrams 
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Motivation #2 for this Talk 
•  “Abstraction Challenges” Panel at MODELS 2013 

•  I posed a question: if I give a modeling assignment** to my class… 

** create a class diagram to express … 
 

•  Response caught me off-guard 
•  if panelists said anything it was “but there is only one right answer” 
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Guess: Common  
Interpretation 

•  Example from Davide Di Ruscio 
clarified a common interpretation 

–  What is a class diagram of a class 
diagram? 

a)  allows classes to have attributes 
and directed associations 

b)  answer (a) + class hierarchies 

c)  answer (b) + pull-up common 
attributes name 

thank	you	
Davide!	

26	



Teaching Databases Mid-1980s 
•  I noticed the same problems 

•  unless you are very specific about what you want students to model,  
you will get a zoo answers 

•  I graded the same way as Davide… 

•  Decades later, in teaching Software Design, I took a broader perspective,  
I realized I needed to tighten the problem spec to reduce the zoo of answers 

27	



Where I Start Now 
•  What is a class diagram of a class 

diagram? 

•  Here is my in-class answer: 

•  For MDE purists,  
this CD is an instance of itself 

-name

Box

-name

Box

-name
-visibility?

Attribute

-attrOf1

-hasAttr*

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-name

Box

-name
-visibility?

Attribute

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-endsAt

1

-connectsTo

*

-attrOf1

-hasAttr*
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The Assignment 
•  Given this metamodel, what minimal 

change do you need to make to 
generalize it to express inheritance 
relationships among classes? 

•  And I get all sorts of answers… 

-name

Box

-name
-visibility?

Attribute

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-endsAt

1

-connectsTo

*

-attrOf1

-hasAttr*
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Answers #1 and #2 
•  The left answer is my answer + constraint that there are no inheritance cycles not shown 

-name

Box

-name
-visibility?

Attribute

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-endsAt

1

-connectsTo

*

-attrOf1

-hasAttr*

-sub *

-super

0..1

let’s	hope	we	agree	on	cardinality	
labeling,	as	it	is	non-standard.	

I	use	Booch	et	al.	UML	conven+on	

-name

Box

-name
-visibility?

Attribute

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-endsAt

1

-connectsTo

*

-attrOf1

-hasAttr*

inheritancePair

1-sub

*

1
-super 0..1
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•  A standard rewrite of database design circa mid-1980s called “normalize” association 

•  And, of course, the rename refactoring which asserts “X” equals “Y” 

A B-End1

*

-End2

* ABPair

A B

1
-End2

*

1

-End1

*

Graph Identities Known Beforehand 
a.k.a. Refactorings 

X Y

31	



A B-End1

*

-End2

* ABPair

A B

1
-End2

*

1

-End1

*

•  A standard rewrite of database design circa mid-1980s called “normalize” association 

 
 

•  Special case where A = B 

AAPair

A

1-End1

*

1
-End2 *

Graph Identities Known Beforehand 
a.k.a. Refactorings 

B
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B

ABPair

A

A

A

-End1 *

-End2

*



So Let’s Derive their Equivalence 

•  Of course, the right diagram is more verbose than the left, but they are equivalent 
•  They don’t get equivalent grades because the right CD is not minimal 

-name

Box

-sub *

-super

0..1
-name

Box

BoxBoxPair

1-sub

*

1
-super 0..1

normalize	

equals	

-name

Box

inheritancePair

1-sub

*

1
-super 0..1

33	



Here’s Another Student Answer 

•  Constraint on both diagrams: no box can have multiple super classes, 
no inheritance cycles, … 

inheritancePair

1-sub

*

-name

Box

-name
-visibility?

Attribute

-attrOf1

-hasAttr*

1
-super 0..1

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-endsAt

1

-connectsTo

*

-name

Box

-name
-visibility?

Attribute

Line

-name
-visible?
-cardinality

LineEnd

-endOf1

-hasEnd2

-endsAt

1

-connectsTo

*

-attrOf1

-hasAttr*

Inheritance

-diamondEnd?

InheritEnd

1

2

1

*
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normalize

Box

InheritancePair Super

Sub

1

1

1 1

1

-sub

*

1

-super 0..1

normalize

Box

InheritancePair Super

1 1

1

-sub *

1

-super 0..1

Box

1-super

0..1

1
-sub *

InheritancePair

Again Use Normalization 
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equals

Each	InheritancePair	has	precisely	1	“super”	End
and	1	“sub”	end

Box

InheritancePair

1*

1

2

-super?

SuperSub
Box

InheritancePair Super

Sub

1

1

1 1

1

-sub

*

1

-super 0..1

Next… 
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Each	InheritancePair	has	precisely	1	“super”	End
and	1	“sub”	end

Box

InheritancePair

1*

1

2

-super?

SuperSub

Each	Inheritance	has	precisely	1	“super”	InheritEnd
No	class	has	2+	“super”	SuperEnds

Box

-super?

InheritEnd

1

*

1

2

Inheritance

inheritancePair

1-sub

*

-name

Box1
-super 0..1

Last Step 

37	Each	Inheritance	has	precisely	1	“super”	InheritEnd
And	1	“sub”	InheritEnd

Each	InheritancePair	has	precisely	1	“super”	End
and	1	“sub”	end

Box

InheritancePair

1*

1

2

-super?

InheritEnd

equals



Big Picture 
•  Graph refactorings are Graph identities 

•  We should be teaching is the 
mathematics of software design –  
this is the Science of Design 

•  Variations in designs are explained by 
the application of graph identities  

•  Interesting assignments for students to 
think about what identities they need to 
grade each other’s answers 

𝑚	
𝑠	

ℂ𝔻	

metamodel	of	all	
class	diagrams	

Cone	of		
Instances	

domain	of	all		
ℂ𝔻	instances	
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CUTE 
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CUTE 
BUT ENGINEERS DON’T 

 NEED THIS… 

CUTE 
 



Really??? 
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Really??? 
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•  It is the cooperation of theory and experiments 
•  experiments give observational data 
•  theory distills seemingly unrelated observations into a system of laws 

•  Go back in time to see the origins of Automated Software Design (ASD) 

Science is Everything in ASD 
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In ~1986, Keys to the Future of  
Software Development 

•  Paradigms of the future must embrace at least: 

•  Compositional Programming  
–  develop software by composing “modules” (not writing code) 

•  Generative Programming  
–  want software development to be automated 

•  Domain-Specific Languages (DSLs) 
–  not C or C++, use domain-specific notations 

•  Automatic Programming  
–  declarative specs → efficient programs 

•  Verification 
–  want our programs to be correct 

•  Need simultaneous advance in all fronts to make a significant impact 
43	



Yeh, Right 

•  But … an example of this futuristic paradigm realized 7 years earlier (1979)  
around time when many AI researchers gave up on automatic programming 

 

•  IMO – most significant result in ASD and automated construction. Period. 

•  Rarely mentioned in typical texts and research papers in SE, software design,  
modularity, product lines, DSLs, MDE, software architectures… 

Selinger	ACM	
SIGMOD	79	
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Relational Query Optimization (RQO) 

SQL	
select	

statement	

parser	

inefficient	
rela<onal	
algebra	

expression	

op<mizer	

efficient	
rela<onal	
algebra	

expression	

declara<ve		
domain-specific		

language	

automa<c	
programming	

code	
generator	

efficient		
program	genera<ve	

programming	

composi<onal	
programming	

correct-by-construc<on	
(see	this	later)	
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What RQO Did 
•  Started with a simple relational algebra expression ​𝑒↓1  derived from SQL SELECT  
•  Applying algebraic identities, created a subdomain of equivalent expressions, incl ​𝑒↓2  
•  Ranked expressions by efficiency and chose the cheapest, ex: ​𝑒↓2  
•  That’s the implementation of the SQL SELECT to use 

​𝑒↓1 	

ℝ𝔼	 metamodel of all 
relational algebra 

expressions 
cone of  

instances 

domain of all  
relational algebra 

expressions 

​𝑒↓2 	
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Keys to RQO Success 
•  Automated development of query evaluation programs 

•  hard-to-write, hard-to-optimize, hard-to-maintain 
•  revolutionized and simplified database usage 
 

•  Based on algebra of tables (not numbers) 
•  different table expressions represented different programs 

•  Program designs / expressions can be optimized automatically 
•  key is finding relational algebra identities  

•  Gave me a framework about how to think about ASD 
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NICE 
 SHOW ME SOMETHING USEFUL 
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Really?? 
•  Revolutionizing database management was not useful? 

•  While you think about an answer,  
     let me show others this example about dataflow applications… 
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•  This spaghetti diagram: it is a dataflow graph of a fundamental parallel hash join 
algorithm, similar to what is used in database machines today 

 
•  To explain & derive it, you need data flow graph identities 

 

How Do You Explain… 
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B HSPLIT

BFILTER

BFILTER
...B1

Bn

A⋈BMERGE

HJOIN

HJOIN

...

A1⋈B1

An⋈Bn

A HSPLIT

BLOOM

BLOOM

...
A1

An

HJOIN

DeWib,	et	al.		
IEEE	TKDE	1990	



•  Need 2 identities that are well-known to database researchers but few others 

•  Bloom filters remove tuples from stream B that provably cannot join with stream A 

•  Parallelize HJOIN operation via map-reduce: 

Simple Way To Derive Gamma 
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HJOINA
B

A⋈B

bloom	
filter	

A

B

A⋈B
BLOOM

BFILTER
HJOIN

HJOIN

map	
reduce	

HJOIN

B
A⋈B

A

HSPLIT
MERGE

HJOIN

HJOIN

...
B1
Bn

A1⋈B1

An⋈Bn

HSPLIT A1
An

HJOINA
B

A⋈B



HJOINA
B

A⋈B

Derivation of Gamma 

HJOIN

B

A⋈B

A

HSPLIT

MERGE...

B1
Bn

A1⋈B1

An⋈Bn

HSPLIT
A1

An

BLOOM

BFILTER
HJOIN

HJOIN

BLOOM

BFILTER
HJOIN

bloom	
filter	
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HJOIN

B
A⋈B

A

HSPLIT
MERGE

HJOIN

HJOIN

...
B1
Bn

A1⋈B1

An⋈Bn

HSPLIT A1
An

map	
reduce	



HJOIN

B

A⋈B

A

HSPLIT

MERGE...

B1
Bn

A1⋈B1

An⋈Bn

HSPLIT
A1

An

BLOOM

BFILTER
HJOIN

HJOIN

BLOOM

BFILTER
HJOIN

Derivation of Gamma 
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graph	
rearrangement	

B HSPLIT

BFILTER

BFILTER
...B1

Bn

A⋈BMERGE

HJOIN

HJOIN

...

A1⋈B1

An⋈Bn

A HSPLIT

BLOOM

BLOOM

...
A1

An

HJOIN



HJOINA
B

A⋈B

Design is Correct By Construction 
•  Initial graph is correct 

•  Rewrites are correct 

•  End result is correct 
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HJOINA
B

A⋈B

bloom	
filter	

A

B

A⋈B
BLOOM

BFILTER
HJOIN

HJOIN

map	
reduce	

HJOIN

B
A⋈B

A

HSPLIT
MERGE

HJOIN

HJOIN

...
B1
Bn

A1⋈B1

An⋈Bn

HSPLIT A1
An

HJOINA
B

A⋈B

B HSPLIT

BFILTER

BFILTER
...B1

Bn

A⋈BMERGE

HJOIN

HJOIN

...

A1⋈B1

An⋈Bn

A HSPLIT

BLOOM

BLOOM

...
A1

An

HJOIN



A

B

A⋈B
BLOOM

BFILTER
HJOIN

HJOIN

HJOINA
B

A⋈B

Remember! 
•  There are many ways to derive the same graph 

•  simple exploration of this space reveals other fundamental identities 

bloom	
filter	

B HSPLIT

MERGEBFILTER

BFILTER

...
B1

Bn

B’1

B’n

M1

HJOIN

HSPLIT

MERGEHJOIN

HJOIN

...

A1      B’1

An       B’n

HSPLIT

BLOOM

A
M

HSPLIT

MERGEBLOOM

BLOOM MMERGE

...

A1

An

A1

An

HJOIN

BFILTER

MSPLIT

M1

Mn

A*B

B’

map	
reduce	
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Identity Optimizations 
•  Merge tuple streams ​𝐴↓1 …​𝐴↓𝑛  into A and then reconstitute them 

•  Merge bitmaps ​𝑀↓1 …​𝑀↓𝑛  into a single bitmap 𝑀 and recreate bitmaps ​𝑀↓1 …​
𝑀↓𝑛  

op+mize	

op+mize	
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MERGE HSPLITA
A1

An

A1

An

A1

An

A1

An

MMERGE MSPLITM
M1

Mn

M1

Mn

M1

Mn

M1

Mn



op+mize	

B HSPLIT

BFILTER

BFILTER
...B1

Bn

A⋈BMERGE

HJOIN

HJOIN

...

A1⋈B1

An⋈Bn

A HSPLIT

BLOOM

BLOOM

...
A1

An

HJOIN

Derivation 

B HSPLIT

MERGEBFILTER

BFILTER

...
B1

Bn

B’1

B’n

M1

HJOIN

HSPLIT

MERGEHJOIN

HJOIN

...

A1      B’1

An       B’n

HSPLIT

BLOOM

A
M

HSPLIT

MERGEBLOOM

BLOOM MMERGE

...

A1

An

A1

An

HJOIN

BFILTER

MSPLIT

M1

Mn

A*B

B’
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This	is	another	
way	to	discover	
graph	iden++es.	



 
TOO FANCY FOR ME; 
I PREFER MY WAY 
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I Understand… 
•  That’s exactly what Chemists said in the 1880s… 

•  but this will change and will take time…  
•  if it were easy, would have been done years ago 
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Let	me	show	
you	a	difference	
between	manual	

sofware	development	
and	automated	
design	in	another	
fundamental	
area	of	CS	



Dense Linear Algebra (DLA) 
•  Robert van de Geijn  

•  last 30 years creating elegant mathematically 
layered designs of DLA computations 

•  Jack Paulson created Elemental Distributed DLA package 
•  standard BLAS3 matrix-matrix operations 
•  solvers 
•  decomposition functions (Cholesky factorization) 
•  eigenvalue problems 
 

•  Bryan Marker mechanized the above work as application 
 of dataflow identities  
•  DxTer name of his tool 
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What DxTer Does 
•  Starts with a simple DLA dataflow graph ​𝑔↓1  specified by library designer or DLA 

user 
•  Applies algebraic identities & creates a subdomain of equivalent graphs, incl ​𝑔↓2  
•  Ranks graphs by their estimated efficiency and choses the cheapest, ex: ​𝑔↓2  
•  That’s the implementation that is translated to code 

​𝑔↓1 	

𝔻𝔽	 metamodel of 
data flow graphs 

cone of  
instances 

domain of all  
data flow graphs 

​𝑔↓2 	
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Performance Results 

•  DxTer automatically generated & optimized Elemental code for BLAS3 and 
Cholesky operations 

•  Benchmarked with manually-written ScaLAPACK 
•  vendors standard option for distributed memory machines; 

auto-tuned or manually-tuned 
•  only alternative available for target machines 

Machine	 #	of	Cores	 Peak	
Performance	

Argonne’s	BlueGene/P	(Intrepid)	 8,192	 27+	TFLOPS	
Texas	Advanced	Compu+ng	Center	

(Lonestar)	
240	 3.2	TFLOPS	
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Bryan Found 
•  Error(s) in Elemental Library 

•  Instances where the Domain Expert Jack forgot to apply an optimization 

•  Or used the wrong algorithm (performance error) 
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What is Really Important… 
•  New hardware architectures are invented every year 

•  DLA algorithms that are optimized for 1 architecture are not optimized for another… 

•  Porting DLA libraries either 
•  runs slower than optimal – which is costly 
•  rewrite much from scratch – which is costly 
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Next Stop – Tensors!  
•  Tensor 

•  n – dimensional array 

•  Tensor Contraction 
•  generalization of matrix 

multiplication 

•  Tensors = matrices on steroids 

•  Based on ROTE Library of Martin Schatz 
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Next Stop  
•  Generalized computations  

to tensor equations in  
Computational Chemistry 

•  Here are the CCSD 
coupled cluster single double 
equations for accurate  
reproduction of experimental 
results on electron correlation 
for molecules 

•  Bryan & Martin created a  
dataflow graph of these  
equations and DxTer  
to optimize their  
implementation 
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Next Step  
•  Generalized computations  

to tensor equations in  
Computational Chemistry 

•  Here are the CCSD 
coupled cluster single double 
equations for accurate  
reproduction of experimental 
results on electron correlation 
for molecules 

•  Marker created a dataflow 
graph of these equations 
and DxTer to optimize their  
implementation 
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State of the Art 
•  Contestant: CTF – Cyclops Tensor Framework 

•  state-of-the art distributed library for tensor computations 
•  performs one contraction (tensor multiply) at a time 
•  chooses among different algorithms 

•  Machine: Benchmark on BlueGene/Q 
•  16 shared-memory cores of IBM’s 64-bit Power A2 architecture @ 1600MHz 
•  each node has 16 GB of memory 
•  ran CCSD on 256 of these nodes, for a total of 4096 cores 
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Performance of Full CCSD 
on 4096 cores, ¼ peak on top 

approx	1.4x	
faster	

approx	1.3x	
larger	

problems	
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This is 
good! 



Performance of Full CCSD 
on 4096 cores, ¼ peak on top 

approx	1.4x	
faster	

approx	1.3x	
larger	

problems	
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This I 
is good! 
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DON, 
I DON’T WANT TO WORRY 
ABOUT MATH 
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DON, 
 

J 
 



30 Years Ago 
•  This leap forward could not have been done or would not believable 

•  simply didn’t have the “observational” data to propel us forward 
•  each “experiment” to derive programs from graph identities took ~4 years 
•  had to look at several domains to see the commonalities → more years 
•  took years to bring the pieces together → doesn’t happen over night 

•  And this is Hard: If there is anything I’ve learned from programming and my career: 
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And If You Do It Right… 
•  You will know you are successful when people ask… 

•  Here, in summary, are my take-away ideas…  
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Finding Domain-Specific Identities 

•  Is a fundamental activity in Science, like Physics 

𝐸=𝑚​𝑐↑2 	

𝐹=𝑚𝑎= ​𝑑𝒑/𝑑𝑡 
	 𝐹=𝐺​​𝑚↓1 ​𝑚↓2 /​𝑑↑2  	

𝚤ℏΨ(𝒓,𝑡)=− ​​ℏ↑2 /2𝑚  ​𝛻↑2 Ψ(𝒓,𝑡)+𝑉(𝒓,𝑡)Ψ(𝒓,𝑡)	

​𝜎↓𝑥 ​𝜎↓𝑦  ≥ ​ℏ/2 	
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Finding Domain-Specific Identities 

•  Is a fundamental activity in Science, like Physics 

𝐸=𝑚​𝑐↑2 	

𝐹=𝑚𝑎= ​𝑑𝒑/𝑑𝑡 
	 𝐹=𝐺​​𝑚↓1 ​𝑚↓2 /​𝑑↑2  	

𝚤ℏΨ(𝒓,𝑡)=− ​​ℏ↑2 /2𝑚  ​𝛻↑2 Ψ(𝒓,𝑡)+𝑉(𝒓,𝑡)Ψ(𝒓,𝑡)	

​𝜎↓𝑥 ​𝜎↓𝑦  ≥ ​ℏ/2 	
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Finding Domain-Specific Identities 

•  Is also a fundamental activity in Automated Software Design 
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Finding Domain-Specific Identities 

•  Is also a fundamental activity in Automated Software Design 
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Teaching Math in  
Software Design is Important 

•  Foundation of Science 

•  Shows algebraic foundations of advances in last 25 years in Software Design: 
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Model	Driven	Engineering	
Refactorings	

Design	Pa5erns	
Parallel	Architectures	

Product	Lines	



Remember History of Science 
•  Greatest technical advances in last century were via science 

•  It will be no difference for software design 

•  It is now time to prepare our students for the future, not to continue the past 

82	Thank	You!	

Even	if	you	
are	a	dog…	

J	


