PN v L P B
B A Ay N - S —
3" = [~ . - -3
v “ -] 1 ™
e Q Raon
|11 S ——-] o/ IS

Teaching Modeling and Variability
in Software Design
and its Importance to Science

Don Batory
Department of Computer Science
University of Texas at Austin
Austin, Texas 78712 1 :

Overture

My work is in automated software design (ASD)

* my interests: software product lines (SPLs),
model driven engineering (MDE), refactoring

» background in systems, not formal methods

« flavor of my work is to use mathematics to explain what | have observed
and done in practice

Custom Software Develooment

from practice

to theory

Heard Lectures by

Jay Misra Tony Hoare Ric Hehner

» Their work is to find algebraic laws of programming (esp. concurrency)

« My approach to software automation has this flavor (physics), but is not as formal
« geared more toward practicing engineers
* does not preclude others with stronger formal backgrounds to follow up

Teaching Modeling and Variability
in Software Design

and its Importance to Science

Don Batory
Department of Computer Science
University of Texas at Austin
Austin, Texas 78712

nner

Introduction

| teach undergraduate and graduate software design courses

» Goal is not JUST to present software design as:

» a collection of best practice techniques and tools to create
understandable and cost-effective designs, but also

» a foundation to explain classical and revolutionary concepts in last 25 years

Model Driven Engineering
Refactorings

Design Patterns
Parallel Architectures
Product Lines

Motivation #1 For This Talk

| attended Software Product Line Conference in Nashville last summer/\\

« Listened to a keynote of a founder of that Conference Series T

 History and motivation behind the creation of SPLC

A
 Software Reuse Conference lacked a 010
focus on practical, cost-effective technology (= /\ e’
« and “we didn’t have to worry about math” | ?‘:‘- |
QD

W&

Not Surprising

 Historically w.r.t. science, | think Software Design is ~1880s

<4
..E

S

 Practice as an art dominated in chemistry
 Against the tide of the history of science

In practice, there is no difference
between theory and practice.

In theory, there is. %
)

= [

AII&TI

The Difference is Obvious

View Software Design from
reductionist and mathematical
perspective

Only if you're in the right place
At the right time
Looking in the right direction

You'll discover something beautiful

' g . % 2
.) ..‘:." L] “.. “‘ — 5 5 .y - . "‘l et W3 ’
4'. >-_' ‘ » LS - - \‘-‘?' v — “
L E————] : A =
. - 3 - — " e -

A Starting Point
to Teach
Modern Software Design

Basic Mathematics

e Addition and subtraction of numbers

Identity A+0=4
commutativity A+P=5F+A4
associativity ~ A+(B+0)=(4+5)+C

« Some operations (multiplication) distribute over addition

R-(C+H)=R-G+R-H

* Functions F R->R not in this
talk...

W&

Dreaded Homework Assignments

* Are these expressions equal? » We were taught to apply a series of
identities replace equals with equals 10 prove

212 45246 = (x+3)-(x+2) their semantic equality or not

 Obviously no! They are different (r+3) (x+2)
= (x+3)-x+(x+3)-2
=xT2 +3-x4+2-2+6

= x72 +5-x+6

MDE Cosmic View

» We have a domain of algebraic expressions defined by metamodel E

metamodel of all
B algebraic
expressions

cone of
instances

domain of all
algebraic
expressions

IE instances

« WWe have 2 elements: expressions 41 and eJ?2

 |s there a path proof between eJ1 and eJ2 using arrows identities
that transforms e/1 into eJ2 ?

MDE Cosmic View

Of course, there can be many paths derivations

Can derive a large number of semantically equivalent expressions
E oot metamodel of all
expressions

cone of
instances

domain of all

[E instances

Yields a subdomain of “equivalent expressions”
A common source of variability in mathematics that we don't think about
You might say some expressions are better than others. More later...

D

Incremental Software Design

s a classical way to control software complexity

il ri2 743

Hallmark of Agile approaches, like XP

Goal of Automated Software Design is to automate all or some the common
arrows/transformations of software design

« “all” is more likely in domain-specific applications
 “some” expected in generic applications, like refactorings

14 si&
Piiies

Automated Software Design

* Programs are graphs Customer Order
name:String date:Date
location:String 8 number:String
Program sendOrder() confirm()
receiveOrder() close()
= while ==
x/ \ N >/ \Block SpecialOrder NZZ:::)OaTe’Gr
/ \\ / \\ l \ date:Date <75
a by a = number:String numb(;r.Stnng
= f confirm()
N Class by close)
. : dispatch
a/ \ ; Diagrams L dspatch <o
X:=a+bh;
y:=a*b;
while (y > a) { pew |
I FROIECT SORT Data FIOW :
a:=a+1; | |"'. I 5 |
I EPRLIT = = SMERGE WHLEYER
Parse X:=a+b = |:|—-.|:|Ed . PRl F—er) s n—i0 ; Ao ':'._-.—‘I:'g
Trees | |

Automated Software Design

 Deals with the addition and subtraction of graphs, not numbers, w. similar properties
identity A+0=4

commutativity A+F=F5+A4
associativity A+(HF+0O)=(A4+B)+C

« Some operations distribute over addition: make graph Aed

R-(C+H)=R-G+R-H

* Functions FG-oG not in this
talk!

Make This Concretel

- Start with UML class diagrams oty=¢

-in -contains
é_ -X -r
- -y >

— = 3

+is a union-like op =
that has an identity O,
is commutative and
associative

—is a set subtraction
operation

CUTE ’
BUT SO WHAT’?

How Would You Explain

» Atypical spaghetti class diagram to someone?

Customer 1 * Receipt
1 -paid
* 0..1
* 1
CarRentalCompany Contract
1 *
1 -belongsTo .
* -owns
RentalCar 1

d =
W&

Using Graph Addition

 Build graph incrementally by adding subgraphs to a simple base graph

-paid

Customer A Receipt
1
0..1
Explain
1 Complexity
Car Rental Company Contract inaSim ple
1 * Way
1 -belongsTo 1
-owns
Rental Car 1

« Each step is understandable, implementable, and testable!

No Unique Way to Construct Diagram

« Consequence of commutativity and associativity of graph addition

-paid
Customer A Receipt

0.1

o

Car Rental Company Contract

1 -belongsTo

-owns

Rental Car 1

« Math confirms the intuitive: one can create a design in any number
of equivalent ways — more later...

CUTE ’ |
BUT WHO CARES’

Graph Identities

often presented as Refactorings

* Push down association

A * 1 B

L, =

Each A is connected to exactly 1 Cor 1 D,
Never both

» Refactorings are reversible (equalities)
 Lots of these identities — see more later...

P

MDE Universe

« Metamodel CID whose domain is class diagrams

CD metamodel of all
class diagrams

cone of
instances

________ domain of all
class diagrams

» (Given two class diagrams, ¢/1 and 42 , does cd1 =cd2 ?
« Can we apply a set of graph identities to prove their equivalence?

» Let'salook at an example

Motivation #2 for this Talk

» “Abstraction Challenges” Panel at MODELS 2013
* | posed a question: if | give a modeling assignment™ to my class...

** create a class diagram to express ...

» Response caught me off-guard
« if panelists said anything it was “but there is only one right answer”

Really??

Guess: Common
Interpretation

thank you
Davide!

» Example from Davide Di Ruscio
clarified a common interpretation

— What is a class diagram of a class
diagram?
a) allows classes to have attributes
and directed associations

b) answer (a) + class hierarchies

c) answer (b) + pull-up common
attributes name

altributes *

Attribute

name:String
type:String

Reference

name:String

attributes *

Attribute

references *

name:String
type:String

Reference

name:String

NamedElement
| g

altributes *

-
name:String

1

Attribute

references *

type: String

Reference ——

26

Teaching Databases Mid-1980s

* I noticed the same problems

* unless you are very specific about what you want students to model,
you will get a zoo answers

* | graded the same way as Davide...

» Decades later, in teaching Software Design, | took a broader perspective,
| realized | needed to tighten the problem spec to reduce the zoo of answers

What is a class diagram of a class

diagram?

Here is my in-class answer:

Where I Start Now

Box

-endsAt

-name

1 -attrOf

* -hasAttr

Attribute

-name
-visibility?

-connectsTo

Line

2

-endOf

-hasEnd

LineEnd

» For MDE purists,
this CD is an instance of itself

-name
-visible?
-cardinality

d
W&

The Assignment

« Given this metamodel, what minimal Box rendsAt Line
change do you need to make to = 1
generalize it to express inheritance
relationships among classes? t| rawof L | endof
* -hasAttr 2 -hasknd
e Andl| get all sorts of answers... -connectsTo
Attribute LineEnd
-name -name
-visibility? * |visible?
-cardinality

d =
W&

Answers #1 and #2

 The left answer is my answer + constraint that there are no inheritance cycles not shown

inheritancePair

-sub * -sub 1
Box -endsAt Line super | 0.1 1 Box -endsAt Line
-super hame -name
1 1
0.1
1 -attrOf 1 -endOf 1 -attrOf 1 -endOf
* -hasAttr 2 -hasEnd * -hasAttr 2 -hasEnd
-connectsTo - -connectsTo -
Attribute LineEnd Attribute LineEnd
-name -name -name -name
-visibility? * |-visible? -visibility? * -visible?
-cardinality -cardinality

let’s hope we agree on cardinality
labeling, as it is non-standard.
| use Booch et al. UML convention

Graph Identities Known Beforehand

a.k.a. Refactorings

« Astandard rewrite of database design circa mid-1980s called “normalize” association

A -End1 -End2 B

-End2 ABPair

» And, of course, the rename refactoring which asserts “X” equals “Y”

X Y

31 “cs>5®
i)

Graph Identities Known Beforehand

a.k.a. Refactorings

« Astandard rewrite of database design circa mid-1980s called “normalize” association

A -End1 -End2 B

-End2 ABPair

» Special case where A=B

AAPair

‘EndJ *
A 1 A
2 []
end -End2 *
*

W&

So Let's Derive their Equivalence

BoxBoxPair

. -sub 1
normalize
[
[1 Box
-super 0..1
-name
0..1
(@)
inheritancePair
eﬁuals -sub 1
[
1 Box

-super 0..1

-name

» Of course, the right diagram is more verbose than the left, but they are equivalent
» They don'’t get equivalent grades because the right CD is not minimal

Here's Another Student Answer

inheritancePair

-super 0..1

-sub

1
Box -endsAt Line
-name
1
1 -attrOf
-hasAttr 2 -hastnd
-connectsTo
Attribute LineEnd
-name -name
-visibility? -visible?
-cardinality

o

Inheritance

1

2

InheritEnd

-diamondEnd?

Constraint on both diagrams: no box can have multiple super classes,
no inheritance cycles, ...

Box -endsAt Line
-name
1
1 -attrOf 1 -endOf
-hasAttr 2 -hasEnd
-connedtsTo
Attribute LineEnd
-name -name
-visibility? -visible?
-cardinality

‘N
W&

Again Use Normalization

InheritancePair

-sub *

Box

normalize

normalize

InheritancePair Super
1
-sub * -super
Box
InheritancePair Super
1
1 -super
1
Sub * Box
-sub

Next...

InheritancePair
InheritancePair Super
1 1
1
1 -super 0.1
equals
I 2
1 1]
SuperSub * 1 Box
Sub * 1 Box P
-super?
-sub

Each InheritancePair has precisely 1 “super” End
and 1 “sub” end

Last Step

InheritancePair

InheritancePair

1 1
equals
2 I 2
]
SuperSub * 1 Box InheritEnd * 1 Box
-super? -super?

Each InheritancePair has precisely 1 “super” End

Each InheritancePair has precisely 1 “super” End
and 1 “sub” end

and 1 “sub” end

Inheritance 1 Box

inheritancePair

-sub 1

1 Box

-super 0..1

-name InheritEnd *

-super?

gaEach Inheritance has precisely 1 “super” InheritEnd:7
And 1 “sub” InheritEnd

Big Picture

Graph refactorings are Graph identities

We should be teaching is the
mathematics of software design -
this is the Science of Design

Variations in designs are explained by
the application of graph identities

Interesting assignments for students to
think about what identities they need to
grade each other’s answers

Cone of
Instances

CD

metamodel of all

class diagrams

.. domain of all

CD instances

W&

CUTE .x
BUT ENGINEERS DONT
NEED THIS..

Really???

Word of the Day Translate Games Blog

g@ctionary.com definitions Vv engineering

engineering

[en-juh-neer-ing]

. B sylables

Examples Word Origin

See more synonyms on Thesaurus.com

noun

1. the art or science of making practical application of the knowledge of

pure sciences, as physics or chemistry, as in the construction of
engines, bridges, buildings, mines, ships, and chemical plants.

2. the action, work, or profession of an engineer.

3. Digital Technology. the art or process of designing and programming
computer systems: computer engineering;
software engineering.

ord of the Day Translate Games Blo
%ctianary.com definitions ineeri
engineering 9

Engineering is
Applied Science
whhose language is

Science is Everything in ASD

* |tis the cooperation of theory and experiments
* experiments give observational data
« theory distills seemingly unrelated observations into a system of laws

» (o back in time to see the origins of Automated Software Design (ASD)

A

Nothing to do'

In ~1986, Keys to the Future of
Software Development

Paradigms of the future must embrace at least:

« Compositional Programming
— develop software by composing “modules” (not writing code)

Generative Programming
— want software development to be automated

Domain-Specific Languages (DSLs)
— not C or C++, use domain-specific notations

Automatic Programming
— declarative specs — efficient programs

Verification
— want our programs to be correct

Need simultaneous advance in all fronts to make a significant impact

Yeh, Right

« But... an example of this futuristic paradigm realized 7 years earlier (1979)
around time when many Al researchers gave up on automatic programming

Relational Query Optimization

Selinger ACM
SIGMOD 79

* IMO — most significant result in ASD and automated construction. Period.

» Rarely mentioned in typical texts and research papers in SE, software design,
modularity, product lines, DSLs, MDE, software architectures...

Relational Query Optimization (RQO)

compositional

saL programming
select
statement
inefficient efficient
- relational . . relational code
parser algebra 2l algebra generator
expression expression
. . . efficient
declarative automatic generative program
domain-specific programming programming
language

correct-by-construction
(see this later)

What RQO Did

Started with a simple relational algebra expression e41 derived from SQL SELECT
Applying algebraic identities, created a subdomain of equivalent expressions, incl eJ2
Ranked expressions by efficiency and chose the cheapest, ex: eJ2

That’s the implementation of the SQL SELECT to use

metamodel of all

R — relational algebra
expressions
cone of
instances El t l
egant!
domain of all

--------- relational algebra
expressions

Keys to RQO Success

Automated development of query evaluation programs
* hard-to-write, hard-to-optimize, hard-to-maintain
« revolutionized and simplified database usage

Based on algebra of tables (not numbers)
» different table expressions represented different programs

Program designs / expressions can be optimized automatically
* key is finding relational algebra identities

Gave me a framework about how to think about ASD

NICE W A
SHOW ME SOMETHING USEFUL

Really??

While you think about an answer,

Revolutionizing database management was not useful?

let me show others this example about dataflow applications...

Softw Syst Model
DOI 10.1007/510270-014-0403-7

REGULAR PAPER

ReFl0: an interactive tool for pipe-and-filter domain specification

and program generation

Rui C. Gongalves - Don Batory - Jodo L. Sobral

Received: 10 March 2013 / Revised: 17 January 2014 / Accepted: 3 February 2014

© Springer-Verlag Berlin Heidelberg 2014

Abstract ReF10 is a framework and interactive tool
to record and systematize domain knowledge used by
experts to derive complex pipe-and-filter (PnF) applications.
Domain knowledge is encoded as transformations that alter
PnF graphs by refinement (adding more details), flattening
(removing modular boundaries), and eptimization (substitut-
ing inefficient PnF graphs with more efficient ones). All three

software development and, like actual circuit design tools,
can express hierarchical systems by levels of abstraction: a
component at level i is defined in terms of a circuit of more
primitive components at level i + 1, recursively. CBSE is an
early example of Model Driven Engineering (MDE) where
models (i.c. hierarchical circuit diagrams) are transformed
into executables.

How Do You Explain...

 This spaghetti diagram: it is a dataflow graph of a fundamental parallel hash join

algorithm, similar to what is used in database machines today DeWitt, et al.
IEEE TKDE 1990

|
|
i A BLOOM Gamma |
|
A ——» HSPLIT <: |
| A BLOOM |
|
| |
| |
l MERGE ——» AB
|
l BFILTER
i B1 AnNBn
|

|

[

i

HJOIN |

B —— HsPuUT |
|

[

|

BFILTER

» To explain & derive it, you need data flow graph identities

D

Simple Way To Derive Gamma

» Need 2 identities that are well-known to database researchers but few others
 Bloom filters remove tuples from stream B that provably cannot join with stream A

HJOIN
bloom
filter
A— — A - BLOOM [+
5 HIOIN —— AxB \ HJOIN - AxB
B =BFILTER/

 Parallelize HJOIN operation via map-reduce:

map
A reduce

HJOIN —— AxB

B . I

Derivation of Gamma

A4>

HJOIN

— AxB
HJOIN
map A HSPLIT HJOIN I A ..
reauce
I
I — AxB

A.xB,

HJOIN |

HJOIN
HspLIT — | BLOOM [———

>
Y

filter

. HJOIN A B
. 1 1
bloom |BFILTER \
MERGE

HJOIN
BLOOM [+

HSPLIT :: HJOIN
————— YBFILTER

A.xB,

oy}
Y

N
W&

» AxB

{?

Derivation of Gamma

4

HJOIN

.

HSPLIT |

BLOOM

\»

N HJOIN .
— | BFILTER
MERGE » AxB
HJOIN
i BLOOM ——— | Ao
~ HSPLIT | ¢ HJOIN
> BFILTER
HJOIN

T
|
: As BLOOM
|
|

graph A ——= HSPLIT <:

BLOOM
rearrangement | An HJOIN

I |
|
|
|
! BFILTER
| By HJOIN
|

B —— HsPuT BFILTER

Design is Correct By Construction

* |Initial graph is correct

» Rewrites are correct A

HJOIN

— AxB

HJOIN

— AxB

* End result is correct

A4>

ng

HJOIN —— AxB

bloom
filter

map
reduce

HJOIN

A~ BLOOM

[BLoom | FION e et
B BFILTER
HJOIN
A—— [HSPLIT - A,
MERGE | AxB

B .

AxB,

BFILTER

Remember!

« There are many ways to derive the same graph
« simple exploration of this space reveals other fundamental identities

HJOIN
bloom
— filter A— Illﬁ!iiiﬂil| [r—
” HJOIN | — AxB — 7 HJOIN | —~AxB
B B I BFILTER

|
| BLOOM
|
|
| BLOOM
A
: * AxB
A—l— HSPLIT
A ACBLOOM Vs
map :
reduce
|
]

BFILTER

Identity Optimizations

* Merge tuple streams 441 ...4n into A and then reconstitute them

A1 /vA1 A1 >A1
| ¥MERGE| A » HSPLIT optinize

An \A I

An ~ A,

n

» Merge bitmaps {1 ...MIn into a single bitmap 47 and recreate bitmaps 4741 ...
Min

| S MMERGE| M ./MSPLIT ogtinie
M, ™ M, My > M,

Derivation

A

AR This is another
way to discover
graph identities.

BFILTER % n
L4 - B‘ :
" o BFILTER & ,
| MERGE |
ER W “"
Yy, Ny .. Yfmemuaaaaase .
N B B,
5 BFILTER

e

g
I
| A BLOOM
I
A ——» HSPLIT <:
| A BLOOM
n
! HJOIN
optimize I
| | |
E— :
|
|
! BFILTER
i B HJOIN
B —— HsPLT BFLTER

DON ’
TOO FANCY FOR ME
I PREFER MY WAY

I Understand...

That’s exactly what Chemists said in the 1880s...
* but this will change and will take time...
« if it were easy, would have been done years ago

Not Surprising

o _ _ o Let me show
» Historically w.rt. science, | think Software Design is ~1880s .
you a difference
-

- between manual
. software development
and automated
* Practice as an art dominated in chemistry . .
« Against the tide of the history of science deSIgn in another
fundamental

In practice, there is no difference
between theory and practice. area of CS

In theory, there is.

Dense Linear Algebra (DLA)

* Robert van de Geijn

» last 30 years creating elegant mathematically
layered designs of DLA computations

 Jack Paulson created Elemental Distributed DLA package
» standard BLAS3 matrix-matrix operations
* solvers
* decomposition functions (Cholesky factorization)
* eigenvalue problems

« Bryan Marker mechanized the above work as application
of dataflow identities

» DxTer name of his tool

What DxTer Does

Starts with a simple DLA dataflow graph gJ1 specified by library designer or DLA
user

Applies algebraic identities & creates a subdomain of equivalent graphs, incl gJ2
Ranks graphs by their estimated efficiency and choses the cheapest, ex: g42
That's the implementation that is translated to code

1) metamodel of
data flow graphs

Look Familiar?

2N domain of all
data flow graphs

cone of
instances

Performance Results

of Cores Peak
Performance

Argonne’s BlueGene/P (Intrepid) 8,192 27+ TFLOPS
Texas Advanced Computing Center 240 3.2 TFLOPS
(Lonestar)

» DxTer automatically generated & optimized Elemental code for BLAS3 and
Cholesky operations

« Benchmarked with manually-written ScaLAPACK

» vendors standard option for distributed memory machines;
auto-tuned or manually-tuned

« only alternative available for target machines

BLAS3 Performance on Intrepid

" ScalLAPACK |

18000

16000

T
o
o
o
o
—

(Sd014D) 2duew.iopad

NNNT wsiLS
NL17 wsJL
NNTY wsJy
NNT7 wsJL
NNNT wwaL
NLT7 ww |
NNTY Wi
NNTT Wi
1N A4S

NN YIAS
1734As

N7 3JAS

LN YTIAS
NN Y2IAS
112AS

N1 42JAS
NY WwWAs

N1 WwAsg
T4 WWAS
11 WwAs

11 Wwwao
N1 Wwao
LN Wwaon
NN Wwa9o

BLAS3 Performance on Intrepid

18000

16000

14000 - " ScalLAPACK |

Performance (GFLOPS)

' Execution Time = Money
this is Huge

Bryan Found

 Error(s) in Elemental Library

 Instances where the Domain Expert Jack forgot to apply an optimization

* Orused the wrong algorithm (performance error)

DxTer-Generated code
is being shipped with
Elemental

What is Really Important...

* New hardware architectures are invented every year

» DLA algorithms that are optimized for 1 architecture are not optimized for another...

» Porting DLA libraries either
* runs slower than optimal — which is costly
* rewrite much from scratch — which is costly

DxTer is a long-term,
cost-effective, & scalable
way to customize DLA libraries

Next Stop - Tensors!

t'q
‘e
B

Tensor
* n-dimensional array

Tensor Contraction

* generalization of matrix
multiplication

Tensors = matrices on steroids

Based on ROTE Library of Martin Schatz

Next Stop

» (Generalized computations
to tensor equations in
Computational Chemistry

* Here are the CCSD
coupled cluster single double
equations for accurate
reproduction of experimental
results on electron correlation
for molecules

* Bryan & Martin created a
dataflow graph of these
equations and DxTer
to optimize their
implementation

ab
Zij

+Z (220 — r2Hes =) (2u]

n

+ 2 (2ve —va)(Tyn + 3 155 - 72)

2
Z rofet Zug“gtn—Zv
ule+Zv£itl n
o + (1+P33) ZuTZt?+ZVE§ 5
D 2%5%2@2@ +Zx2f§tl
Mokt - D
—EDZH +Z 2120 —
ZHetl +Z 2y
—ZG Zzuf;g— “mTae+Z
+Z ZTfﬁ—eTm; BY 4) (203 — ri)
-

efm

e Z QU TAb + Zyz‘?rf;f

fmn

TS +Z 2vel —

efn

b
—uil)ty

bf)

ri)te = > (2vin — Vil Tan

ef ef
1n

(1+P2%) {Z reles

—Y Pti+ Yy FITSS -) GITZ: + = Zw
m e m

1 .
- +P§)ZX2§‘T$T}
em

W= +Z (202 — xZPef = D (20Tl —ulD)e]

Next Step e

Xg? — Z eft Zulglgtn - ZV bf)
n

+ Generalized computations | *© ~ +2Vm“tl
to tensoncauatianssn
Comput: N I S
ontrivia pace
» Here are
Coupl.ed O (]-()722 ef ef af
equatior w0~ Vom) T
reprodu —
<. Searched in ~“11lsec
for molecuies = - L Gitm —) (2Ujc — Uig)Ton +) (2wis — x27)tg
+ 2T5 — T2S)HY + 2rt —ril)
» Marker created a dataflow ;(;
graph of these equations W - . . o
and DxTer to optimize their | = ~ +ZQ” an +ZYGfT” (L +755) Z ot
implementation Sy Rier 4+ YoEire - Yarne 4 ZW
—(%+P§)ZX2§‘T%§} 09

State of the Art

» Contestant: CTF — Cyclops Tensor Framework
« state-of-the art distributed library for tensor computations
« performs one contraction (tensor multiply) at a time
« chooses among different algorithms

» Machine: Benchmark on BlueGene/Q
* 16 shared-memory cores of IBM’s 64-bit Power A2 architecture @ 1600MHz
« each node has 16 GB of memory
» ran CCSD on 256 of these nodes, for a total of 4096 cores

Performance of Full CCSD

on 4096 cores, + peak on top

—+—DxTer-Generated
120001 3 CTF i
approx 1.3x
10000 larger
P problems
S
(LB 8000 |-
> approx 1.4x
Q ook faster
4]
S
@]
E 4000 |-
o
2000 |- This is
good!
& 1
;

15 20 25 30 35 40 45 50 55 60
Problem size (no)

Performance of Full CCSD

on 4096 cores, 7 peak on top

00000 }‘ j.L—I 8¥'|£e;-Genérated | | | | | 7.2\ l
Take-away: }

0

C

DxTer was essential in }
. guiding the development
" of ROTE & its Infrastructure

| ‘ ‘ is good!
| | | | | [| |
1 15 20 25 40 45 50 55 60
Qr‘
72 p—e
AUSTIN &

Problem size (no)

There is much, much
more to say...
but enough for today

DON, 8
I DONT WANT TO WORRY
ABOUT MATH ©O

30 Years Ago

» This leap forward could not have been done or would not believable
« simply didn’t have the “observational” data to propel us forward
» each “experiment” to derive programs from graph identities took ~4 years
 had to look at several domains to see the commonalities — more years
» took years to bring the pieces together — doesn't happen over night

 And this is Hard: If there is anything I've learned from programming and my career:

We are geniuses at making the simplest
things complicated; Finding the simplicity
ane elegance bHehine what we do is harel

And If You Do It Right..

* You will know you are successful when people ask...

So what was the problem?
Wihat is so hared albout this?

* Here, in summary, are my take-away ideas...

Finding Domain-Specific Identities

 |s a fundamental activity in Science, like Physics

z ﬂw\,
17 W
\Z,,? V-B =0 G
7 OB
_ oD E=mecr
aglxaly >h A
_ ma= dl’/dt v =z 6}72\/1 2y
- 2/6272

WY (r,t)=—hT12 2m VT2 (r,t)+ V()P (r)

Finding Domain-Specific Identities

 Is afundamental activity in Science, like Physics

~ Physfes fs discovering
the structural identities
of {th@ Universe

LOovy Zit/e
F/ma’dp/dt

MES 6};2\/
1 7,
2
/6272

WY (r,6)=—hT12 2m V129 (r,e)+ V(r,d)¥(r,0)

Finding Domain-Specific Identities

 Is also a fundamental activity in Automated Software Design

Finding Domain-Specific Identities

 Is also a fundamental activity in Automated Software Design

=17 L &
A@{t@m@{t@d S@ﬂ"‘&watr@ Design

is discovering the structural
ldentities off S@ﬁtwatr@ Domains.

Teaching Math in
Software Design is Important

* Foundation of Science

« Shows algebraic foundations of advances in last 25 years in Software Design:

Model Driven Engineering
Refactorings

Design Patterns
Parallel Architectures
Product Lines

Remember History of Science

» Greatest technical advances in last century were via science

« It will be no difference for software design

 |tis now time to prepare our students for the future, not to continue the past

Even if you
are a dog...

©

Thank You!

