Compiling Polychronous Programs into Conditional Partial Orders for ASIP Synthesis

Sandeep K. Shukla, FERMAT Lab, Virginia Tech.

with Mahesh Nanjundappa, FERMAT Lab, Virginia Tech.

Motivation

Current trends in hardware requirements

- ↑Performance, ↓Latency, ↓Power Consumption, ↓Form Factor
- [^]Programmability for enabling reuse of components
- *Flexibility* to introduce late specification changes

Motivation

Current trends in hardware requirements

- ↑Performance, ↓Latency, ↓Power Consumption, ↓Form Factor
- [^]Programmability for enabling reuse of components
- **†**Flexibility to introduce late specification changes

Application Specific Instruction-set Processors (ASIPs)

- Designed to exploit special characteristics of class of applications
- Reuse of components based on programmable modes of operation
- Custom instruction sets allow to maintain a level of flexibility
- Balance between ASICs and general purpose processors

Requirements

Design methodologies for ASIPs should provide,

- Compact & efficient way to describe & store instruction sets
- Identify parallelism and express modes of operation
- A way to express available and required resources and map them
- Encoding of instruction sets for various optimization criteria

Requirements

Design methodologies for ASIPs should provide,

- Compact & efficient way to describe & store instruction sets
- Identify parallelism and express modes of operation
- A way to express available and required resources and map them
- Encoding of instruction sets for various optimization criteria

Conditional Partial Order Graphs (CPOGs) offer these facilities!

Motivation

Introduction to CPOGs Introduction to MRICDF MRICDF Models to CPOGs Analysis and ASIP Synthesis Conclusion and Future

Outline of the talk

- 1 Motivation
- 2 Introduction to CPOGs
- Introduction to MRICDF
- MRICDF Models to CPOGs
- **5** Analysis and ASIP Synthesis
- 6 Conclusion and Future

Introduction Definitions Encoding instructions sets using CPOGs Composition of Instruction Sets

Outline of the talk

Motivation

- 2 Introduction to CPOGs
- Introduction to MRICDF
- 4 MRICDF Models to CPOGs
- 5 Analysis and ASIP Synthesis
- 6 Conclusion and Future

Introduction Definitions Encoding instructions sets using CPOGs Composition of Instruction Sets

Conditional Partial Order Graphs

- A compact semantic model to express and compose large partial order sets
- Yields itself very easy for transformations, refinements, optimizations and encodings
- Graphically they can be visualised as hierarchical, annotated, weighted, directed graphs

Introduction Definitions Encoding instructions sets using CPOGs Composition of Instruction Sets

Formally CPOG is represented as a quintuple $G = \langle V, E, X, \rho, \phi \rangle$

- V is a set of *nodes* which corresponds to events/atomic actions in a system that is being modelled.
- E ⊆ V × V is a set of directed *edges* between the *nodes*. An edge from node n to node m, indicates action m depends on n.
- X is a set of n Boolean variables. Each Boolean variable could be assigned values {0,1} resulting in unique 2ⁿ possible codes.
- ρ is a *restriction function* defined on the set of Boolean variables in X as $\rho \in \mathcal{F}(X)$, where $\mathcal{F}(X)$ is the set of all Boolean functions on the Boolean variables in X.
- Function $\phi : (V \cup E) \to \mathcal{F}(X)$. It assigns a Boolean condition $\phi(z)$ to every node and edge z in the graph G.

Introduction Definitions Encoding instructions sets using CPOGs Composition of Instruction Sets

Example of CPOG

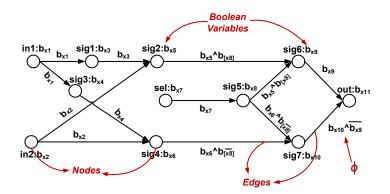


Figure: Graphical representation of CPOG

Introduction Definitions Encoding instructions sets using CPOGs Composition of Instruction Sets

Example : Simple adder/subtractor application

- Does add or subtract based on select signal
- Table below shows micro-steps of instructions for example

Adder(A=A+B; <i>select</i>)	Subtractor(A=A-B; <i>select</i>)	
<i>I</i> ₁ :Load A	<i>I</i> ₁ :Load A	
<i>I</i> ₂ :Load B	<i>I</i> ₂ :Load B	
<i>I</i> ₃ :Compute A+B	<i>I</i> ₅ :Compute A-B	
<i>I</i> ₄ :Store A	<i>I</i> ₄ :Store A	

Introduction Definitions Encoding instructions sets using CPOGs Composition of Instruction Sets

Example : Simple adder/subtractor application

- Does add or subtract based on select signal
- Table below shows micro-steps of instructions for example

Adder(A=A+B; <i>select</i>)	Subtractor(A=A-B; <i>select</i>)	
<i>I</i> ₁ :Load A	<i>I</i> ₁ :Load A	
<i>I</i> ₂ :Load B	<i>I</i> ₂ :Load B	
<i>I</i> ₃ :Compute A+B	<i>I</i> ₅ :Compute A-B	
<i>I</i> ₄ :Store A	<i>I</i> ₄ :Store A	

• Representing this instructions as CPOG H

• Create 5 nodes:
$$I_1, I_2, I_3, I_4, I_5$$

• Create 6 edges:
$$I_1 \xrightarrow{select} I_3$$
, $I_2 \xrightarrow{select} I_3$, I_3 , $I_3 \xrightarrow{select} I_4$,
 $I_1 \xrightarrow{select} I_r$, $I_2 \xrightarrow{select} I_r$, $I_2 \xrightarrow{select} I_4$,

• Create Boolean variable set
$$X = \{select\}$$

• Establish ρ and ϕ functions

Introduction Definitions Encoding instructions sets using CPOGs Composition of Instruction Sets

Encoding

- Atomic actions I_1 and I_2 can be executed concurrently or sequentially
- Atomic action I_2 has to be executed before I_3
- Partial order on the set of micro-steps/atomic actions
- Assigning values from the set {0,1} to variables of X, to get unique Boolean vectors
- Unique vectors can be used as opcodes for instructions

Introduction Definitions Encoding instructions sets using CPOGs Composition of Instruction Sets

CPOG representing execution of Simple adder/subtractor application

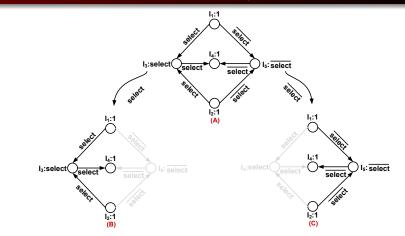


Figure: (A) Graphical representation of CPOG H, (B) $H|_{select}$, (C) $H|_{select}$

Introduction Definitions Encoding instructions sets using CPOGs Composition of Instruction Sets

Composition of Instruction sets

- Instruction is a pair $\mathcal{I} = (\phi, H|_{select})$, where ϕ is the opcode and $H|_{select}$ is the partial order
- Instruction set \mathcal{IS} is a set of instructions $\mathcal{IS} = \{\mathcal{I}_1, \mathcal{I}_2, ..\}$, such that each \mathcal{I}_k has a different opcode ϕ

Introduction Definitions Encoding instructions sets using CPOGs Composition of Instruction Sets

Composition of Instruction sets

- Instruction is a pair $\mathcal{I} = (\phi, H|_{select})$, where ϕ is the opcode and $H|_{select}$ is the partial order
- Instruction set \mathcal{IS} is a set of instructions $\mathcal{IS} = \{\mathcal{I}_1, \mathcal{I}_2, ..\}$, such that each \mathcal{I}_k has a different opcode ϕ
- Composition of 2 instruction sets \mathcal{IS}_i and \mathcal{IS}_k
 - Is defined as $\mathcal{IS}_i \cup \mathcal{IS}_k$
 - Is defined only when no instruction in set *IS_i* has same opcode as any instruction in *IS_k*
 - Is not defined if there exists 2 instructions with same opcodes
- Composition of more than 2 instruction sets is done by performing pairwise composition in arbitrary order

Introduction Definitions Encoding instructions sets using CPOGs Composition of Instruction Sets

Composition of Instruction sets

- Instruction is a pair $\mathcal{I} = (\phi, H|_{select})$, where ϕ is the opcode and $H|_{select}$ is the partial order
- Instruction set \mathcal{IS} is a set of instructions $\mathcal{IS} = \{\mathcal{I}_1, \mathcal{I}_2, ..\}$, such that each \mathcal{I}_k has a different opcode ϕ
- Composition of 2 instruction sets \mathcal{IS}_i and \mathcal{IS}_k
 - Is defined as $\mathcal{IS}_i \cup \mathcal{IS}_k$
 - Is defined only when no instruction in set *IS_i* has same opcode as any instruction in *IS_k*
 - Is not defined if there exists 2 instructions with same opcodes
- Composition of more than 2 instruction sets is done by performing pairwise composition in arbitrary order
- Complexity of composition: Linear with respect to the total number of instructions

Introduction Definitions MRICDF Actors Clock Calculus

Outline of the talk

- Motivation
- 2 Introduction to CPOGs
- 3 Introduction to MRICDF
- MRICDF Models to CPOGs
- 5 Analysis and ASIP Synthesis
- 6 Conclusion and Future

Introduction Definitions MRICDF Actors Clock Calculus

MRICDF - Multi-Rate Instantaneous Communication Data Flow

- A Visual Language (with a textual substitute) to express a computation over concurrent streams of data
- MRICDF model is hierarchical composition of actors
- Actors are connected using channels
- Signal flows via channels

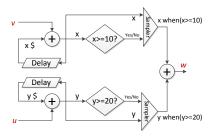


Figure: A simple MRICDF model

Introduction Definitions MRICDF Actors Clock Calculus

Definitions

Definition (Event)

An occurrence of a fresh value on a signal constitutes an event

Introduction Definitions MRICDF Actors Clock Calculus

Definitions

Definition (Event)

An occurrence of a fresh value on a signal constitutes an event

Definition (Signal)

A signal is a totally ordered sequence of events

Introduction Definitions MRICDF Actors Clock Calculus

Definitions

Definition (Event)

An occurrence of a fresh value on a signal constitutes an event

Definition (Signal)

A signal is a totally ordered sequence of events

Definition (Instant set of a signal)

 $\sigma(x)$ – set of all instants where signal x has events

Introduction Definitions MRICDF Actors Clock Calculus

Definitions

Definition (Event)

An occurrence of a fresh value on a signal constitutes an event

Definition (Signal)

A signal is a totally ordered sequence of events

Definition (Instant set of a signal)

 $\sigma(x)$ – set of all instants where signal x has events

Definition (Clock of a signal)

Instant set $\sigma(x)$ is also known as clock of signal denoted by \hat{x}

Introduction Definitions MRICDF Actors Clock Calculus

Definitions

Definition (Event)

An occurrence of a fresh value on a signal constitutes an event

Definition (Signal)

A signal is a totally ordered sequence of events

Definition (Instant set of a signal)

 $\sigma(x)$ – set of all instants where signal x has events

Definition (Clock of a signal)

Instant set $\sigma(x)$ is also known as clock of signal denoted by \hat{x}

Introduction Definitions MRICDF Actors Clock Calculus

Definitions

Definition (Event)

An occurrence of a fresh value on a signal constitutes an event

Definition (Signal)

A signal is a totally ordered sequence of events

Definition (Instant set of a signal)

 $\sigma(x)$ – set of all instants where signal x has events

Definition (Clock of a signal)

Instant set $\sigma(x)$ is also known as clock of signal denoted by \hat{x}

Definition (Synchronous Signals)

Signals x and y are called synchronous signals iff $\hat{x} = \hat{y}$

Introduction Definitions MRICDF Actors Clock Calculus

Definitions

Definition (Data Dependence Relation)

• Multiple signals being read/written in an instant have a partial order - Dependency order

A dependency relation $x \xrightarrow{[c]} y$, indicates that the signal y is dependent on x, when condition c is true

• Data dependencies are not static, they change based on predicates

Introduction Definitions MRICDF Actors Clock Calculus

MRICDF Actors

- MRICDF consists of 4 primitive actors
- Numerous derived actors, Ex: Logical And, Multiplication, etc
- Every actor has a predefined set of Rate Constraints
- User can specify various synchronization requirements by adding additional clock constraints

Actor	Clock	Data Dependency
definition	Relations	Relations
Function	$\sigma(a) = \sigma(b) = \sigma(r)$	a ightarrow r
$r = a \star b$	$\hat{a}=\hat{b}=\hat{r}$	b ightarrow r
Buffer	$\sigma(y) = \sigma(x)$	No
$y = x$ n init v_1v_n	$\hat{y} = \hat{x}$	dependency
Sampler	$\sigma(y) = \sigma(x) \cap \sigma(z = true)$	
y = x when z	$\hat{y} = \hat{x} \wedge [\hat{z}]$	$x \xrightarrow{[z]} y$
Merge	$\sigma(r) = \sigma(a) \cup \sigma(b)$	a ightarrow r
r = a default b	$\hat{r}=\hat{a}ee{b}$	$b \xrightarrow{\hat{b}-\hat{a}} r$

Introduction Definitions MRICDF Actors Clock Calculus

Clock Calculus

- Determining relations between clocks and analysing is done in a step called *Clock Calculus*
- Aim of clock calculus: To determine which signals participate in which reaction
- The signal that participates in each and every reaction -Master Trigger - multiple master triggers possible
- Clock of Master Trigger signal is Master Clock
- Clocks of signals that aren't master triggers can be derived based on predicates of either master clock or clocks of other known signals
- Hierarchically ordering these clocks gives us *Hierarchial Clock Relation Graph* (HCRG)
- Rooted HCRG : Clock Tree

Outline of the talk

- 1 Motivation
- 2 Introduction to CPOGs
- Introduction to MRICDF
- MRICDF Models to CPOGs
- 5 Analysis and ASIP Synthesis
- 6 Conclusion and Future

POGs Merge Actor thesis Observations uture Composite Actor

Buffer Actor

Function Actor Buffer Actor Sampler Actor Merge Actor Observations Composite Actor

CPOG for Function Actor

Operation: $y = f(x_1, x_2, ..., x_n)$, Clock relation: $\hat{y} = \hat{x}_1 = \hat{x}_2 = ... = \hat{x}_n$ • $V = \{y, x_1, x_2, ..., x_n\}$ • $E = \{x_i \to y \mid x_i \in (x_1, x_2, ..., x_n)\}$ • $X = \{\{b_{x_i}\} \cup \{b_{x_i} | x_i \in (x_1, x_2, ..., x_n)\}\},\$ $b_{y} = b_{x1} = b_{x2} = \dots = b_{xn}$ • Function ϕ $x_n:b_{xn}$ $\phi(\mathbf{y}) = b_{\mathbf{y}},$ $\phi(x_1) = b_{x_1}.$ $x_3:b_{x_3}$ $\phi(x_n) = b_{x_n}$ $\phi(x_1 \rightarrow y) = b_{x_1}$ $\phi(x_2 \to y) = b_{x2},$ x5:bx5 $\phi(x_n \to v) = b_{x_n}$ Figure: CPOG for Function Actor

Sandeep K. Shukla, FERMAT Lab, Virginia Tech.

Polychronous Specifications to ASIP

15/30

Function Actor Buffer Actor Sampler Actor Merge Actor Observations Composite Actor

CPOG for Buffer Actor

Operation: y = x \$ 1 *init c* Clock relation: $\hat{y} = \hat{x}$

- $V = \{y, x\}$
- *E* = {}
- $X = \{b_y, b_x\}$
- $\rho = \{b_y = b_x\}$
- Function ϕ $\phi(y) = b_y$ $\phi(x) = b_x$

Figure: CPOG for Buffer Actor

Function Actor Buffer Actor Sampler Actor Merge Actor Observations Composite Actor

CPOG for Sampler Actor

Operation: y = x when c Clock relation: $\hat{y} = \hat{x} * [c]$ • $V = \{v, x, c\}$ • $E = \{x \rightarrow y, c \rightarrow y\}$ • $X = \{b_v, b_x, b_c, b_{[c]}, b_{[\bar{c}]}\}$ ۵ $\rho = \left\{ \begin{array}{l} \left\{ b_y = b_x \wedge b_{[c]} \right\} \cup \\ \left\{ b_c = b_{[c]} \lor b_{[\bar{c}]} \right\} \cup \\ \left\{ b_{[c]} \land b_{[\bar{c}]} = false \right\} \end{array} \right\}$ • Function ϕ $\mathbf{x}:\mathbf{b}_{\mathbf{x}} \bigcirc \overset{\mathbf{D}_{\mathbf{x}} \land \mathbf{D}_{[\mathbf{c}]}}{\longrightarrow} \bigcirc \overset{\mathbf{D}_{\mathbf{x}} \land \mathbf{D}_{[\mathbf{c}]}}{\longleftarrow}$ $\phi(\mathbf{y}) = b_{\mathbf{y}}$ c:b $\phi(x) = b_x$ $\phi(c) = b_c$ Figure: CPOG for Sampler Actor

Function Actor Buffer Actor Sampler Actor Merge Actor Observations Composite Actor

CPOG for Merge Actor

Operation: y = x default z Clock relation: $\hat{v} = \hat{x} + \hat{z}$ • $V = \{y, x, z\}$ • $E = \{x \rightarrow y, z \rightarrow y\}$ • $X = \{b_v, b_x, b_z\}$ • $\rho = \{b_v = b_x \vee b_z\}$ • Function ϕ $\phi(\mathbf{y}) = b_{\mathbf{y}}$ $\phi(x) = b_x$ $\phi(z) = b_{z}$ $\phi(x \to y) = b_x$ $\phi(z \rightarrow v) = b_z \wedge b_y$

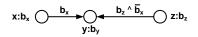


Figure: CPOG for Merge Actor

Function Actor Buffer Actor Sampler Actor Merge Actor Observations Composite Actor

Observations

Observation

For each primitive actor A, if g_A represents the CPOG derived using the steps described above, then g_A contains all the necessary information for control of scheduling the execution of A.

Observation

For primitive actors A_1 and A_2 , if g_{A_1} and g_{A_2} represents the corresponding CPOGs then for composition $A_1 \mid A_2$, the corresponding CPOG is the $g_{A_1} \cup g_{A_2}$.

Function Actor Buffer Actor Sampler Actor Merge Actor Observations Composite Actor

Deriving CPOG for Composite Actor

- Combination of primitive actors that are used to express modular and hierarchical behavior
- First we derive the CPOGs of composite actors and then compose (∪) it with the CPOG of the rest of the model
- Algorithm 1 lists the method used to derive a CPOG for a composite actor

Function Actor Buffer Actor Sampler Actor Merge Actor Observations Composite Actor

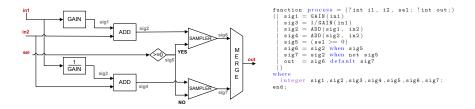
Algorithm 1: Algorithm to derive CPOG for a Composite Actor

```
Input: Composite Actor CA, Model M
Output: CPOG G = \langle V, E, X, \rho, \phi \rangle for CA
Initialize G = \langle \{\}, \{\}, \{\}, \{\}, \{\}, \{\} \rangle;
Let A_{NC} & A_{C} be partition of actors in CA into sets of Primitive(Non-composite) and Composite actors resp.
(present immediately under CA);
Let I_{CA} = \{p_1, p_2, \dots, p_n\} be the inports of CA;
Let O_{CA} = \{p_1, p_2, \dots, p_m\} be the outports of CA:
foreach composite actor a \in A_C do
      //recursive call, ∪ represents composition of CPOGs
       G \leftarrow G \cup composite\_cpog(a, M);
end
foreach primitive actor a \in A_{NC} do
       //∪ represents composition of CPOGs
       G \leftarrow G \cup primitive\_cpog(a):
end
foreach p_i \in I_{CA} \cup O_{CA} do
       Let chin be the in-coming channel connected to pi;
       Let pein be source port of the channel chin;
      foreach out-going channel chout from p; do
             Let peout be destination port of channel chout;
             Let e_{new} = createEdge(p_{e_{in}}, p_{e_{out}});
             E \leftarrow E \cup \{e_{new}\};
             \phi(e_{new}) = \text{Constraints on } ch_{in} \&\& \text{Constraints on } ch_{out};
      end
end
return G:
```

Function Actor Buffer Actor Sampler Actor Merge Actor Observations Composite Actor

Example MRICDF model

- Sample MRICDF model & its SIGNAL code
- ADD, Comparator, GAIN & $\frac{1}{GAIN}$ are predefined function actors



Function Actor Buffer Actor Sampler Actor Merge Actor Observations Composite Actor

CPOG for the Example MRICDF model

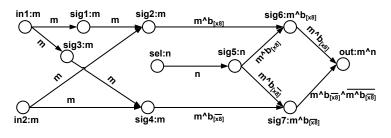


Figure: CPOG for the MRICDF Model

Function Actor Buffer Actor Sampler Actor Merge Actor Observations Composite Actor

Formal representation CPOG for the Example MRICDF model

Quintuple	Set
Element	Elements
V	$\{in1, in2, sel, out, sig1, sig2, sig3, sig4, sig5, sig6, sig7\}$
E	$\{ \textit{in1} ightarrow \textit{sig1}, \textit{in1} ightarrow \textit{sig3}, \textit{in2} ightarrow \textit{sig2}, \textit{in2} ightarrow \textit{sig4},$
	$sig3 ightarrow sig4, \; sig1 ightarrow sig2, \; sig2 ightarrow sig6, \; sig4 ightarrow sig7,$
	$sel o sig5, sig5 o sig6, sig5 o sig7, sig6 o out, sig7 o out \}$
Х	$\{b_{x1}, b_{x2}, b_{x3}, b_{x4}, b_{x5}, b_{x6}, b_{x7}, b_{x8}, b_{[x8]}, b_{\overline{[x8]}}, b_{x9}, b_{x10}, b_{x11}\}$
ρ	$\{b_{x1} = b_{x2} = b_{x3} = b_{x4} = b_{x5} = b_{x6} = \mathbf{m}, \ b_{x7} = b_{x8} = \mathbf{n},$
	$b_{x8} = b_{[x8]} \lor b_{\overline{[x8]}}, \ \textit{false} = b_{[x8]} \land b_{\overline{[x8]}}, \ b_{x9} = b_{x5} \land b_{[x8]},$
	$b_{x10} = b_{x6} \wedge b_{\overline{[x8]}}, \ b_{x11} = b_{x9} \vee b_{x10}$
ϕ	$\{\phi(in1) = b_{x1}, \ \phi(in2) = b_{x2}, \ \phi(sig1) = b_{x3}, \ \phi(sig2) = b_{x5},$
	$\phi(sig3) = b_{x4}, \ \phi(sig4) = b_{x6}, \ \phi(sel) = b_{x7}, \ \phi(sig5) = b_{x8},$
	$\phi(sig6) = b_{x9}, \ \phi(sig7) = b_{x10}, \ \phi(out) = b_{x11}, \ \phi(in1 \rightarrow sig1) = b_{x1},$
	$\phi(in1 \rightarrow sig3) = b_{x1}, \ \phi(in2 \rightarrow sig2) = b_{x2}, \ \phi(in2 \rightarrow sig4) = b_{x2},$
	$\phi({\it sig1} ightarrow {\it sig2}) = b_{ imes 3}, \; \phi({\it sig3} ightarrow {\it sig4}) = b_{ imes 4},$
	$\phi(sig2 o sig6) = b_{x5} \wedge b_{[x8]}, \ \phi(sig4 o sig7) = b_{x6} \wedge b_{[\overline{x8}]},$
	$\phi(sel \to sig5) = b_{x7}, \ \phi(sig5 \to sig6) = b_{x5} \land b_{[x8]},$
	$\phi(sig5 \rightarrow sig7) = b_{x6} \wedge b_{\overline{[x8]}},$
	$\phi(sig6 ightarrow out) = b_{x9}, \ \phi(sig7 ightarrow out) = b_{x10} \wedge \overline{b_{x9}} \}$

Sandeep K. Shukla, FERMAT Lab, Virginia Tech.

Outline of the talk

Motivation

- 2 Introduction to CPOGs
- Introduction to MRICDF
- 4 MRICDF Models to CPOGs
- **5** Analysis and ASIP Synthesis
 - 6 Conclusion and Future

Transformations Resource Estimation Implementability

Transformations Resource Estimation Implementability

- Initial CPOG needs to be simplified before transformations are applied
- Aim is to reduce the number of variables in set X
- \bullet Use the equivalence relations in set ρ
- Algorithm 2 lists the simplification step

Algorithm 2: simplify(G): Simplify CPOG

Input: Un-simplified CPOG $G = (V, E, X, \rho, \phi)$ Output: Simplified CPOG $G = (V, E, X, \rho, \phi)$ Let $\mathcal{E} = \{\text{Set of all Boolean equalities among single literals in } \rho\}$; Let $(b_{x1}, b_{x2}, ..., b_{xn})$ represent the vector X; foreach $b_{xi} \in V$ do if $(b_{xi} = b_{xj}) \in \mathcal{E}$ then replace all occurrences of b_{xj} in ρ and ϕ and simplify with idempotence and other Boolean simplification laws to obtain new ρ , and new ϕ . $X = X - \{b_{xj}\}$; end

Transformations Resource Estimation Implementability

Proposition

Algorithm 2 converges and reduces the number of control states of the resulting system

Proof: Convergence is based on number of equivalence classes of control variables in X, and its reduction in each step

- Number of control states can be reduced further by proving more Boolean equivalences using powerful solvers like SMT solver
- Another way to reduce control states is by eliminating equivalent behaviors

Transformations Resource Estimation Implementability

Proposition

Algorithm 2 converges and reduces the number of control states of the resulting system

Proof: Convergence is based on number of equivalence classes of control variables in X, and its reduction in each step

- Number of control states can be reduced further by proving more Boolean equivalences using powerful solvers like SMT solver
- Another way to reduce control states is by eliminating equivalent behaviors
- X is simplified

Transformations Resource Estimation Implementability

Proposition

Algorithm 2 converges and reduces the number of control states of the resulting system

Proof: Convergence is based on number of equivalence classes of control variables in X, and its reduction in each step

- Number of control states can be reduced further by proving more Boolean equivalences using powerful solvers like SMT solver
- Another way to reduce control states is by eliminating equivalent behaviors
- X is simplified

Set of assignments for variables in X that results in feasible behaviors : 1101, 1110

Transformations Resource Estimation Implementability

Propagate feasible behavior assignments onto CPOGs to get feasible CPOGs

- Nodes and edges with value 0 are eliminated
- Node is excluded, if all the incoming edges to a node are excluded
- Node is excluded, if all the outgoing edges of a node are excluded
- All edges originating from an excluded node are also excluded
- All edges terminating on an excluded node are also excluded
- All other nodes and edges are left as such

Algorithm 3 provides the set of feasible CPOGs

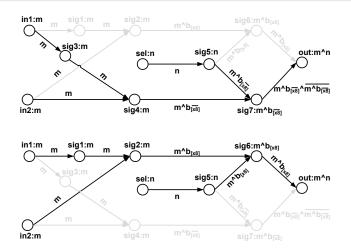
Transformations Resource Estimation Implementability

Algorithm 3: $getFeasibleCPOGs(G, \mathcal{F})$

```
Input: Simplified CPOG G = \langle V, E, X, \rho, \phi \rangle, Feasible behavior assignments for X as \mathcal{F} = \{\langle f_1 \rangle, \dots, \langle f_k \rangle\} //Ex:
       \mathcal{F}=\{<1101>,<1110>\}
Output: Set of CPOGs \mathscr{V} = \{G_1, G_2, \dots, G_k\}
Let \mathscr{V} = \{\}:
foreach feasible behavior f_i \in \mathcal{F} do
      Let G_i be an instance of G_i
      foreach node or edge z \in G_i do
             //Evaluate \phi(z) based on f_i value
             if \phi(z)|_{f} = 0 then
                    G_i = G_i - \{z\}; //Remove z from CPOG
                    //Remove unused edges
                    if z is node then
                           Remove all incoming edges to z and Remove all outgoing edges from z:
                    end
             end
       end
       //Remove isolated nodes
      foreach remaining node z \in G; do
             Let I_z be the set of incoming edges to z and let O_z be the set of outgoing edges from z;
             if I_{z} == \{\} or O_{z} == \{\} then
                   G_i = G_i - \{z\}; //Remove node z from CPOG
             end
       end
       \mathscr{V} \leftarrow \mathscr{V} \cup G_i; //Add G_i to set \mathscr{V}
end
return 𝒴:
```

Transformations Resource Estimation Implementability

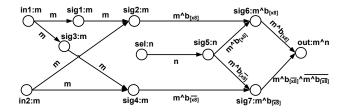
Feasible CPOGs with Boolean vector 1101 and 1110



Sandeep K. Shukla, FERMAT Lab, Virginia Tech.

Transformations Resource Estimation Implementability

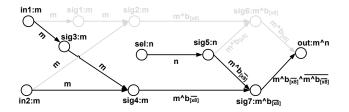
Resources needed



- CPOG has 11 nodes
- Assuming each node requires a computation resource, we need 11 computation resources

Transformations Resource Estimation Implementability

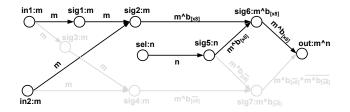
Resources needed



- Feasible CPOG with X = 1101 has 8 nodes
- We only require 8 computation resources

Transformations Resource Estimation Implementability

Resources needed



- Feasible CPOG with X = 1110 has 8 nodes
- We only require 8 computation resources

The assignments X = 1101, 1110 can be used as opcodes and one can measure latency, power consumption etc in each mode.

Transformations Resource Estimation Implementability

- Propagate feasible behaviors assignment values to the CPOG
 - CPOG remains still connected and rooted
 - No causal loops
- Then the CPOG is sequentially implementable
- Algorithm 4 checks the implementability

Algorithm 4: *isImplementable*(G)

```
Input: Simplified CPOG G = \langle V, E, X, \rho, \phi \rangle, Feasible behavior assignments for X as \mathcal{F} = \{\langle f_1 \rangle, ..., \langle f_k \rangle\}

Output: True if implementable, else false

Let \mathcal{V} = getFeasibleCPOGs(G, \mathcal{F});

foreach CPOG G_i \in \mathcal{V} do

if G_i has causal loops OR G_i is not weakly connected then

| return false;

end

end

return True;
```

29/30

Outline of the talk

Motivation

- 2 Introduction to CPOGs
- Introduction to MRICDF
- 4 MRICDF Models to CPOGs
- 5 Analysis and ASIP Synthesis
- 6 Conclusion and Future

Conclusion and Future Work Further Reading

Conclusion and Future Work Further Reading

Conclusion and Future Work

Conclusion

- Proposed a new compilation scheme for SIGNAL/MRICDF polychronous specifications based on CPOGs
- Provided algorithms to derive CPOGs from SIGNAL/MRICDF specifications

Future Work

- Explore the aspect of sequential and concurrent implementability by applying transformations on the CPOGs
- Formal proofs

Conclusion and Future Work Further Reading

Further Reading for CPOGs and ASIPs

Mokhov, A., Sokolov, D., Rykunov, M., Yakovlev, A. Formal modelling and transformations of processor instruction sets – MEMOCODE 2011

Mokhov, A., Yakovlev, A.

Conditional Partial Order Graphs: Model, Synthesis and Application – IEEE Transactions on Computers 2010

📚 Kountouris, A.A., Wolinski, C.

Hierarchical conditional dependency graphs as a unifying design representation in the CODESIS high-level synthesis system – ISSS 2000

Mokhov, A., Iliasov, A., Sokolov, D., Rykunov, M., Yakovlev, A., Romanovsky, A. Synthesis of Processor Instruction Sets from High-Level ISA Specifications – IEEE Transactions on Computers 2013

Singh, S.

Hardware/Software Synthesis and Verification Using Esterel - CPA 2007

Mathworks Inc.

HDL Coder: Generate Verilog and VHDL code for FPGA and ASIC Designs

Conclusion and Future Work Further Reading

Further Reading for MRICDF and Polychrony

Paul Le Guernic, Jean-Pierre Talpin, Jean-Christophe Le Lann Polychrony for system design – Journal for Circuits, Systems and Computers 2003

Bijoy A. Jose, Sandeep K. Shukla An alternative polychronous model and synthesis methodology for model-driven embedded software – ASP-DAC 2010

M Nanjundappa, M Kracht, J Ouy and SK Shukla A novel technique for correct-by-construction concurrent code synthesis from polychronous specifications – ACSD 2013

Bijoy A. Jose, Jason Pribble, Sandeep K. Shukla Faster Software Synthesis Using Actor Elimination Techniques for Polychronous Formalism – ACSD 2010

J. Brandt, M. Gemunde, K. Schneider, S. Shukla, and J.-P. Talpin.

Embedding polychrony into synchrony – In IEEE Transactions on Software

Engineering, 2012.

Any Questions??

Thank You!!