
Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Compiling Polychronous Programs into Conditional
Partial Orders for ASIP Synthesis

Sandeep K. Shukla,
FERMAT Lab,
Virginia Tech.

with
Mahesh Nanjundappa,

FERMAT Lab,
Virginia Tech.

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 0/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Motivation

Current trends in hardware requirements

↑Performance, ↓Latency, ↓Power Consumption, ↓Form Factor

↑Programmability for enabling reuse of components

↑Flexibility to introduce late specification changes

Application Specific Instruction-set Processors (ASIPs)

Designed to exploit special characteristics of class of
applications

Reuse of components based on programmable modes of
operation

Custom instruction sets allow to maintain a level of flexibility

Balance between ASICs and general purpose processors

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 1/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Motivation

Current trends in hardware requirements

↑Performance, ↓Latency, ↓Power Consumption, ↓Form Factor

↑Programmability for enabling reuse of components

↑Flexibility to introduce late specification changes

Application Specific Instruction-set Processors (ASIPs)

Designed to exploit special characteristics of class of
applications

Reuse of components based on programmable modes of
operation

Custom instruction sets allow to maintain a level of flexibility

Balance between ASICs and general purpose processors

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 1/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Requirements

Design methodologies for ASIPs should provide,

Compact & efficient way to describe & store instruction sets

Identify parallelism and express modes of operation

A way to express available and required resources and map
them

Encoding of instruction sets for various optimization criteria

Conditional Partial Order Graphs (CPOGs) offer these facilities!

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 2/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Requirements

Design methodologies for ASIPs should provide,

Compact & efficient way to describe & store instruction sets

Identify parallelism and express modes of operation

A way to express available and required resources and map
them

Encoding of instruction sets for various optimization criteria

Conditional Partial Order Graphs (CPOGs) offer these facilities!

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 2/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Outline of the talk

1 Motivation

2 Introduction to CPOGs

3 Introduction to MRICDF

4 MRICDF Models to CPOGs

5 Analysis and ASIP Synthesis

6 Conclusion and Future

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 2/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
Encoding instructions sets using CPOGs
Composition of Instruction Sets

Outline of the talk

1 Motivation

2 Introduction to CPOGs

3 Introduction to MRICDF

4 MRICDF Models to CPOGs

5 Analysis and ASIP Synthesis

6 Conclusion and Future

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 2/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
Encoding instructions sets using CPOGs
Composition of Instruction Sets

Conditional Partial Order Graphs

A compact semantic model to express and compose large
partial order sets

Yields itself very easy for transformations, refinements,
optimizations and encodings

Graphically they can be visualised as hierarchical, annotated,
weighted, directed graphs

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 3/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
Encoding instructions sets using CPOGs
Composition of Instruction Sets

Formally CPOG is represented as a quintuple G = 〈V ,E ,X , ρ, φ〉

V is a set of nodes which corresponds to events/atomic
actions in a system that is being modelled.

E ⊆ V × V is a set of directed edges between the nodes. An
edge from node n to node m, indicates action m depends on n.

X is a set of n Boolean variables. Each Boolean variable could
be assigned values {0, 1} resulting in unique 2n possible codes.

ρ is a restriction function defined on the set of Boolean
variables in X as ρ ∈ F(X), where F(X) is the set of all
Boolean functions on the Boolean variables in X .

Function φ : (V ∪ E)→ F(X). It assigns a Boolean condition
φ(z) to every node and edge z in the graph G .

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 4/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
Encoding instructions sets using CPOGs
Composition of Instruction Sets

Example of CPOG

sig6:bx9

sig7:bx10

out:bx11

in2:bx2

bx1
in1:bx1 sig1:bx3

bx2

sig3:bx4

b
x4b x

2

b
x1

bx7

sel:bx7 sig5:bx8

bx5^b[x8]

bx9

b x
5̂

b [
x8
]

bx6^b[x8]

b
x6^b

[x8] bx10^bx9

sig2:bx5

sig4:bx6

bx3

Nodes

Edges

Boolean

Variables

O

Figure: Graphical representation of CPOG

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 5/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
Encoding instructions sets using CPOGs
Composition of Instruction Sets

Example : Simple adder/subtractor application

• Does add or subtract based on select signal
• Table below shows micro-steps of instructions for example

Adder(A=A+B; select) Subtractor(A=A-B; select)

I1:Load A I1:Load A
I2:Load B I2:Load B
I3:Compute A+B I5:Compute A-B
I4:Store A I4:Store A

• Representing this instructions as CPOG H

Create 5 nodes: I1, I2, I3, I4, I5

Create 6 edges: I1
select−−−→ I3, I2

select−−−→ I3, I3
select−−−→ I4,

I1
select−−−→ I5, I2

select−−−→ I5, I5
select−−−→ I4

Create Boolean variable set X = {select}
Establish ρ and φ functions

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 6/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
Encoding instructions sets using CPOGs
Composition of Instruction Sets

Example : Simple adder/subtractor application

• Does add or subtract based on select signal
• Table below shows micro-steps of instructions for example

Adder(A=A+B; select) Subtractor(A=A-B; select)

I1:Load A I1:Load A
I2:Load B I2:Load B
I3:Compute A+B I5:Compute A-B
I4:Store A I4:Store A

• Representing this instructions as CPOG H

Create 5 nodes: I1, I2, I3, I4, I5

Create 6 edges: I1
select−−−→ I3, I2

select−−−→ I3, I3
select−−−→ I4,

I1
select−−−→ I5, I2

select−−−→ I5, I5
select−−−→ I4

Create Boolean variable set X = {select}
Establish ρ and φ functions

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 6/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
Encoding instructions sets using CPOGs
Composition of Instruction Sets

Encoding

Atomic actions I1 and I2 can be executed concurrently or
sequentially

Atomic action I2 has to be executed before I3

Partial order on the set of micro-steps/atomic actions

Assigning values from the set {0,1} to variables of X , to get
unique Boolean vectors

Unique vectors can be used as opcodes for instructions

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 7/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
Encoding instructions sets using CPOGs
Composition of Instruction Sets

CPOG representing execution of Simple adder/subtractor application

(A)

I2:1

se
le
ct

I4:1

I1:1

selectI3: selectI5:

select

se
le
ct

select

select
select

(B)

I2:1

se
le
ct

I4:1

I1:1

selectI3: selectI5:

select

se
le
ct

select

select
select

(C)

I2:1

se
le
ct

I4:1

I1:1

selectI3: selectI5:

select

se
le
ct

select

select
select

se
le
ct

select

Figure: (A) Graphical representation of CPOG H, (B) H|select , (C) H|select
Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 8/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
Encoding instructions sets using CPOGs
Composition of Instruction Sets

Composition of Instruction sets

Instruction is a pair I = (φ,H|select), where φ is the opcode
and H|select is the partial order

Instruction set IS is a set of instructions - IS = {I1, I2, ..},
such that each Ik has a different opcode φ

Composition of 2 instruction sets IS i and ISk
Is defined as IS i ∪ ISk
Is defined only when no instruction in set IS i has same
opcode as any instruction in ISk
Is not defined if there exists 2 instructions with same opcodes

Composition of more than 2 instruction sets is done by
performing pairwise composition in arbitrary order

Complexity of composition: Linear with respect to the total
number of instructions

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 9/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
Encoding instructions sets using CPOGs
Composition of Instruction Sets

Composition of Instruction sets

Instruction is a pair I = (φ,H|select), where φ is the opcode
and H|select is the partial order

Instruction set IS is a set of instructions - IS = {I1, I2, ..},
such that each Ik has a different opcode φ

Composition of 2 instruction sets IS i and ISk
Is defined as IS i ∪ ISk
Is defined only when no instruction in set IS i has same
opcode as any instruction in ISk
Is not defined if there exists 2 instructions with same opcodes

Composition of more than 2 instruction sets is done by
performing pairwise composition in arbitrary order

Complexity of composition: Linear with respect to the total
number of instructions

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 9/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
Encoding instructions sets using CPOGs
Composition of Instruction Sets

Composition of Instruction sets

Instruction is a pair I = (φ,H|select), where φ is the opcode
and H|select is the partial order

Instruction set IS is a set of instructions - IS = {I1, I2, ..},
such that each Ik has a different opcode φ

Composition of 2 instruction sets IS i and ISk
Is defined as IS i ∪ ISk
Is defined only when no instruction in set IS i has same
opcode as any instruction in ISk
Is not defined if there exists 2 instructions with same opcodes

Composition of more than 2 instruction sets is done by
performing pairwise composition in arbitrary order

Complexity of composition: Linear with respect to the total
number of instructions

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 9/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
MRICDF Actors
Clock Calculus

Outline of the talk

1 Motivation

2 Introduction to CPOGs

3 Introduction to MRICDF

4 MRICDF Models to CPOGs

5 Analysis and ASIP Synthesis

6 Conclusion and Future

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 9/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
MRICDF Actors
Clock Calculus

MRICDF - Multi-Rate Instantaneous Communication Data Flow

A Visual Language (with a
textual substitute) to
express a computation over
concurrent streams of data

MRICDF model is
hierarchical composition of
actors

Actors are connected using
channels

Signal flows via channels

x>=10?

y>=20?

Sam
p

lerYes/No

Sam
p

ler

+

+

+

Delay

Delay

v

u

y $

x $

x

y

x

y

w

Yes/No

y when(y>=20)

x when(x>=10)

Figure: A simple MRICDF model

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 10/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
MRICDF Actors
Clock Calculus

Definitions

Definition (Event)

An occurrence of a fresh value on a signal constitutes an event

Definition (Signal)

A signal is a totally ordered sequence of events

Definition (Instant set of a signal)

σ(x) – set of all instants where signal x has events

Definition (Clock of a signal)

Instant set σ(x) is also known as clock of signal denoted by x̂

Definition (Synchronous Signals)

Signals x and y are called synchronous signals iff x̂ = ŷ

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 11/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
MRICDF Actors
Clock Calculus

Definitions

Definition (Event)

An occurrence of a fresh value on a signal constitutes an event

Definition (Signal)

A signal is a totally ordered sequence of events

Definition (Instant set of a signal)

σ(x) – set of all instants where signal x has events

Definition (Clock of a signal)

Instant set σ(x) is also known as clock of signal denoted by x̂

Definition (Synchronous Signals)

Signals x and y are called synchronous signals iff x̂ = ŷ

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 11/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
MRICDF Actors
Clock Calculus

Definitions

Definition (Event)

An occurrence of a fresh value on a signal constitutes an event

Definition (Signal)

A signal is a totally ordered sequence of events

Definition (Instant set of a signal)

σ(x) – set of all instants where signal x has events

Definition (Clock of a signal)

Instant set σ(x) is also known as clock of signal denoted by x̂

Definition (Synchronous Signals)

Signals x and y are called synchronous signals iff x̂ = ŷ

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 11/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
MRICDF Actors
Clock Calculus

Definitions

Definition (Event)

An occurrence of a fresh value on a signal constitutes an event

Definition (Signal)

A signal is a totally ordered sequence of events

Definition (Instant set of a signal)

σ(x) – set of all instants where signal x has events

Definition (Clock of a signal)

Instant set σ(x) is also known as clock of signal denoted by x̂

Definition (Synchronous Signals)

Signals x and y are called synchronous signals iff x̂ = ŷ

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 11/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
MRICDF Actors
Clock Calculus

Definitions

Definition (Event)

An occurrence of a fresh value on a signal constitutes an event

Definition (Signal)

A signal is a totally ordered sequence of events

Definition (Instant set of a signal)

σ(x) – set of all instants where signal x has events

Definition (Clock of a signal)

Instant set σ(x) is also known as clock of signal denoted by x̂

Definition (Synchronous Signals)

Signals x and y are called synchronous signals iff x̂ = ŷ

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 11/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
MRICDF Actors
Clock Calculus

Definitions

Definition (Event)

An occurrence of a fresh value on a signal constitutes an event

Definition (Signal)

A signal is a totally ordered sequence of events

Definition (Instant set of a signal)

σ(x) – set of all instants where signal x has events

Definition (Clock of a signal)

Instant set σ(x) is also known as clock of signal denoted by x̂

Definition (Synchronous Signals)

Signals x and y are called synchronous signals iff x̂ = ŷ

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 11/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
MRICDF Actors
Clock Calculus

Definitions

Definition (Data Dependence Relation)

• Multiple signals being read/written in an instant have a partial
order - Dependency order

A dependency relation x
[c]−→ y , indicates that the signal y is

dependent on x , when condition c is true

Data dependencies are not static, they change based on
predicates

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 12/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
MRICDF Actors
Clock Calculus

MRICDF Actors

MRICDF consists of 4 primitive actors
Numerous derived actors, Ex: Logical And, Multiplication, etc
Every actor has a predefined set of Rate Constraints
User can specify various synchronization requirements by
adding additional clock constraints

Actor Clock Data Dependency
definition Relations Relations

Function σ(a) = σ(b) = σ(r) a→ r

r = a ? b â = b̂ = r̂ b → r
Buffer σ(y) = σ(x) No
y = x$n init v1..vn ŷ = x̂ dependency
Sampler σ(y) = σ(x) ∩ σ(z = true)

y = x when z ŷ = x̂ ∧ ˆ[z] x
[z]−→ y

Merge σ(r) = σ(a) ∪ σ(b) a→ r

r = a default b r̂ = â ∨ b̂ b
b̂−â−−−→ r

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 13/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Introduction
Definitions
MRICDF Actors
Clock Calculus

Clock Calculus

Determining relations between clocks and analysing is done in
a step called - Clock Calculus

Aim of clock calculus: To determine which signals participate
in which reaction

The signal that participates in each and every reaction -
Master Trigger - multiple master triggers possible

Clock of Master Trigger signal is Master Clock

Clocks of signals that aren’t master triggers can be derived
based on predicates of either master clock or clocks of other
known signals

Hierarchically ordering these clocks gives us Hierarchial Clock
Relation Graph (HCRG)

Rooted HCRG : Clock Tree

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 14/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Function Actor
Buffer Actor
Sampler Actor
Merge Actor
Observations
Composite Actor

Outline of the talk

1 Motivation

2 Introduction to CPOGs

3 Introduction to MRICDF

4 MRICDF Models to CPOGs

5 Analysis and ASIP Synthesis

6 Conclusion and Future

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 14/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Function Actor
Buffer Actor
Sampler Actor
Merge Actor
Observations
Composite Actor

CPOG for Function Actor

Operation: y = f (x1, x2, .., xn), Clock relation: ŷ = x̂1 = x̂2 = .. = x̂n
V = {y , x1, x2, ..., xn}
E = {xi → y |xi ∈ (x1, x2, ..., xn)}
X = {{by} ∪ {bx i |xi ∈ (x1, x2, ..., xn)}},
by = bx1 = bx2 = ... = bxn
Function φ

φ(y) = by ,
φ(x1) = bx1,

...
φ(xn) = bxn,

φ(x1 → y) = bx1,
φ(x2 → y) = bx2,

...
φ(xn → y) = bxn

x3:bx3 y:by

bx1

x1:bx1

x5:bx5

x4:bx4

xn:bxn
x2:bx2

bx2
bxn

bx5

bx4

bx3

Figure: CPOG for Function Actor
Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 15/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Function Actor
Buffer Actor
Sampler Actor
Merge Actor
Observations
Composite Actor

CPOG for Buffer Actor

Operation: y = x $ 1 init c
Clock relation: ŷ = x̂

V = {y , x}
E = {}
X = {by , bx}
ρ = {by = bx}
Function φ

φ(y) = by
φ(x) = bx

x:bx y:by

Figure: CPOG for Buffer Actor

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 16/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Function Actor
Buffer Actor
Sampler Actor
Merge Actor
Observations
Composite Actor

CPOG for Sampler Actor

Operation: y = x when c
Clock relation: ŷ = x̂ ∗ [c]

V = {y , x , c}
E = {x → y , c → y}
X = {by , bx , bc , b[c], b[c̄]}

ρ =

{by = bx ∧ b[c]}∪
{bc = b[c] ∨ b[c̄]}∪
{b[c] ∧ b[c̄] = false}

Function φ

φ(y) = by
φ(x) = bx
φ(c) = bc

x:bx

y:by

c:bc

bx ˄ b[c] bx ˄ b[c]

Figure: CPOG for Sampler Actor

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 17/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Function Actor
Buffer Actor
Sampler Actor
Merge Actor
Observations
Composite Actor

CPOG for Merge Actor

Operation: y = x default z
Clock relation: ŷ = x̂ + ẑ

V = {y , x , z}
E = {x → y , z → y}
X = {by , bx , bz}
ρ = {by = bx ∨ bz}
Function φ

φ(y) = by
φ(x) = bx
φ(z) = bz

φ(x → y) = bx
φ(z → y) = bz ∧ b̄x

x:bx

y:by

z:bz

bx bz ^ bx ¯

Figure: CPOG for Merge Actor

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 18/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Function Actor
Buffer Actor
Sampler Actor
Merge Actor
Observations
Composite Actor

Observations

Observation

For each primitive actor A, if gA represents the CPOG derived
using the steps described above, then gA contains all the necessary
information for control of scheduling the execution of A.

Observation

For primitive actors A1 and A2, if gA1 and gA2 represents the
corresponding CPOGs then for composition A1 | A2, the
corresponding CPOG is the gA1 ∪ gA2 .

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 19/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Function Actor
Buffer Actor
Sampler Actor
Merge Actor
Observations
Composite Actor

Deriving CPOG for Composite Actor

Combination of primitive actors that are used to express
modular and hierarchical behavior

First we derive the CPOGs of composite actors and then
compose (∪) it with the CPOG of the rest of the model

Algorithm 1 lists the method used to derive a CPOG for a
composite actor

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 20/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Function Actor
Buffer Actor
Sampler Actor
Merge Actor
Observations
Composite Actor

Algorithm 1: Algorithm to derive CPOG for a Composite Actor
Input: Composite Actor CA, Model M
Output: CPOG G = 〈V , E , X , ρ, φ〉 for CA
Initialize G = 〈{}, {}, {}, {}, {}〉;
Let ANC & AC be partition of actors in CA into sets of Primitive(Non-composite) and Composite actors resp.
(present immediately under CA);
Let ICA = {p1, p2, .., pn} be the inports of CA;
Let OCA = {p1, p2, .., pm} be the outports of CA;

foreach composite actor a ∈ AC do
//recursive call, ∪ represents composition of CPOGs
G ← G ∪ composite cpog(a,M);

end
foreach primitive actor a ∈ ANC do

//∪ represents composition of CPOGs
G ← G ∪ primitive cpog(a);

end
foreach pi ∈ ICA ∪ OCA do

Let chin be the in-coming channel connected to pi ;
Let pein be source port of the channel chin ;

foreach out-going channel chout from pi do
Let peout be destination port of channel chout ;
Let enew = createEdge(pein , peout);

E ← E ∪ {enew};
φ(enew) = Constraints on chin && Constraints on chout ;

end

end
return G ;

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 21/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Function Actor
Buffer Actor
Sampler Actor
Merge Actor
Observations
Composite Actor

Example MRICDF model

Sample MRICDF model & its SIGNAL code

ADD, Comparator, GAIN & 1
GAIN are predefined function

actors

GAIN

1

GAIN

ADD

ADD

>=0

SAMPLER

SAMPLER

M

E

R

G

E

YES

NO

in1

in2

out

sig1

sig2

sig3

sig4

sig6

sig7

sig5

sel

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 22/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Function Actor
Buffer Actor
Sampler Actor
Merge Actor
Observations
Composite Actor

CPOG for the Example MRICDF model

sig6:m^b[x8]

sig7:m^b[x8]

out:m^n

in2:m

m
in1:m sig1:m

m

sig3:m

mm

m

n

sel:n sig5:n

m^b[x8] m
^b
[x8]

m
^b
[x
8]

m^b[x8]

m
^b
[x8]

sig2:m

sig4:m

m

m^b[x8]^m^b[x8]

Figure: CPOG for the MRICDF Model

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 22/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Function Actor
Buffer Actor
Sampler Actor
Merge Actor
Observations
Composite Actor

Formal representation CPOG for the Example MRICDF model

Quintuple Set
Element Elements

V {in1, in2, sel , out, sig1, sig2, sig3, sig4, sig5, sig6, sig7}
E {in1→ sig1, in1→ sig3, in2→ sig2, in2→ sig4,

sig3→ sig4, sig1→ sig2, sig2→ sig6, sig4→ sig7,
sel → sig5, sig5→ sig6, sig5→ sig7, sig6→ out, sig7→ out}

X {bx1, bx2, bx3, bx4, bx5, bx6, bx7, bx8, b[x8], b[x8], bx9, bx10, bx11}
ρ {bx1 = bx2 = bx3 = bx4 = bx5 = bx6 = m, bx7 = bx8 = n,

bx8 = b[x8] ∨ b[x8], false = b[x8] ∧ b[x8], bx9 = bx5 ∧ b[x8],

bx10 = bx6 ∧ b[x8], bx11 = bx9 ∨ bx10}
φ {φ(in1) = bx1, φ(in2) = bx2, φ(sig1) = bx3, φ(sig2) = bx5,

φ(sig3) = bx4, φ(sig4) = bx6, φ(sel) = bx7, φ(sig5) = bx8,
φ(sig6) = bx9, φ(sig7) = bx10, φ(out) = bx11, φ(in1→ sig1) = bx1,
φ(in1→ sig3) = bx1, φ(in2→ sig2) = bx2, φ(in2→ sig4) = bx2,
φ(sig1→ sig2) = bx3, φ(sig3→ sig4) = bx4,
φ(sig2→ sig6) = bx5 ∧ b[x8], φ(sig4→ sig7) = bx6 ∧ b[x8],

φ(sel → sig5) = bx7, φ(sig5→ sig6) = bx5 ∧ b[x8],
φ(sig5→ sig7) = bx6 ∧ b[x8],

φ(sig6→ out) = bx9, φ(sig7→ out) = bx10 ∧ bx9}

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 22/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Transformations
Resource Estimation
Implementability

Outline of the talk

1 Motivation

2 Introduction to CPOGs

3 Introduction to MRICDF

4 MRICDF Models to CPOGs

5 Analysis and ASIP Synthesis

6 Conclusion and Future

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 22/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Transformations
Resource Estimation
Implementability

Initial CPOG needs to be simplified before transformations are
applied

Aim is to reduce the number of variables in set X

Use the equivalence relations in set ρ

Algorithm 2 lists the simplification step

Algorithm 2: simplify(G): Simplify CPOG
Input: Un-simplified CPOG G=〈V , E , X , ρ, φ〉
Output: Simplified CPOG G=〈V , E , X , ρ, φ〉
Let E = {Set of all Boolean equalities among single literals in ρ};
Let 〈bx1, bx2,, bxn〉 represent the vector X ;

foreach bxi ∈ V do
if (bxi = bxj) ∈ E then

replace all occurrences of bxj in ρ and φ and simplify with idempotence and other Boolean
simplification laws to obtain new ρ, and new φ.
X = X − {bxj};

end

end

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 23/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Transformations
Resource Estimation
Implementability

Proposition

Algorithm 2 converges and reduces the number of control states of
the resulting system

Proof: Convergence is based on number of equivalence classes of
control variables in X , and its reduction in each step

Number of control states can be reduced further by proving
more Boolean equivalences using powerful solvers like SMT
solver

Another way to reduce control states is by eliminating
equivalent behaviors

X is simplified

Set of assignments for variables in X that results in feasible
behaviors : 1101, 1110

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 24/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Transformations
Resource Estimation
Implementability

Proposition

Algorithm 2 converges and reduces the number of control states of
the resulting system

Proof: Convergence is based on number of equivalence classes of
control variables in X , and its reduction in each step

Number of control states can be reduced further by proving
more Boolean equivalences using powerful solvers like SMT
solver

Another way to reduce control states is by eliminating
equivalent behaviors

X is simplified

Set of assignments for variables in X that results in feasible
behaviors : 1101, 1110

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 24/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Transformations
Resource Estimation
Implementability

Proposition

Algorithm 2 converges and reduces the number of control states of
the resulting system

Proof: Convergence is based on number of equivalence classes of
control variables in X , and its reduction in each step

Number of control states can be reduced further by proving
more Boolean equivalences using powerful solvers like SMT
solver

Another way to reduce control states is by eliminating
equivalent behaviors

X is simplified

Set of assignments for variables in X that results in feasible
behaviors : 1101, 1110

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 24/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Transformations
Resource Estimation
Implementability

Propagate feasible behavior assignments onto CPOGs to get
feasible CPOGs

Nodes and edges with value 0 are eliminated

Node is excluded, if all the incoming edges to a node are
excluded

Node is excluded, if all the outgoing edges of a node are
excluded

All edges originating from an excluded node are also excluded

All edges terminating on an excluded node are also excluded

All other nodes and edges are left as such

Algorithm 3 provides the set of feasible CPOGs

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 25/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Transformations
Resource Estimation
Implementability

Algorithm 3: getFeasibleCPOGs(G ,F)
Input: Simplified CPOG G=〈V , E , X , ρ, φ〉, Feasible behavior assignments for X as F={〈f1〉,.., 〈fk〉} //Ex:

F={<1101>,<1110>}
Output: Set of CPOGs V ={G1, G2, ..., Gk}
Let V = {};
foreach feasible behavior fi ∈ F do

Let Gi be an instance of G ;
foreach node or edge z ∈ Gi do

//Evaluate φ(z) based on fi value
if φ(z)|fi == 0 then

Gi = Gi − {z}; //Remove z from CPOG
//Remove unused edges
if z is node then

Remove all incoming edges to z and Remove all outgoing edges from z;
end

end

end

//Remove isolated nodes
foreach remaining node z ∈ Gi do

Let Iz be the set of incoming edges to z and let Oz be the set of outgoing edges from z;
if Iz == {} or Oz == {} then

Gi = Gi − {z}; //Remove node z from CPOG
end

end

V ← V ∪ Gi ; //Add Gi to set V
end
return V ;

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 26/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Transformations
Resource Estimation
Implementability

Feasible CPOGs with Boolean vector 1101 and 1110

sig6:m^b[x8]

sig7:m^b[x8]

out:m^n

in2:m

m
in1:m sig1:m

m

sig3:m

mm

m

n

sel:n sig5:n

m^b[x8] m
^b
[x8]

m
^b
[x
8]

m^b[x8]

m
^b
[x8]

sig2:m

sig4:m

m

m^b[x8]^m^b[x8]

sig6:m^b[x8]

sig7:m^b[x8]

out:m^n

in2:m

m
in1:m sig1:m

m

sig3:m

mm

m

n

sel:n sig5:n

m^b[x8] m
^b
[x8]

m
^b
[x
8]

m^b[x8]

m
^b
[x8]

sig2:m

sig4:m

m

m^b[x8]^m^b[x8]

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 27/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Transformations
Resource Estimation
Implementability

Resources needed

sig6:m^b[x8]

sig7:m^b[x8]

out:m^n

in2:m

m
in1:m sig1:m

m

sig3:m

mm

m

n

sel:n sig5:n

m^b[x8] m
^b
[x8]

m
^b
[x
8]

m^b[x8]

m
^b
[x8]

sig2:m

sig4:m

m

m^b[x8]^m^b[x8]

CPOG has 11 nodes

Assuming each node requires a computation resource, we
need 11 computation resources

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 28/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Transformations
Resource Estimation
Implementability

Resources needed

sig6:m^b[x8]

sig7:m^b[x8]

out:m^n

in2:m

m
in1:m sig1:m

m

sig3:m

mm

m

n

sel:n sig5:n

m^b[x8] m
^b
[x8]

m
^b
[x
8]

m^b[x8]

m
^b
[x8]

sig2:m

sig4:m

m

m^b[x8]^m^b[x8]

Feasible CPOG with X = 1101 has 8 nodes

We only require 8 computation resources

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 28/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Transformations
Resource Estimation
Implementability

Resources needed

sig6:m^b[x8]

sig7:m^b[x8]

out:m^n

in2:m

m
in1:m sig1:m

m

sig3:m

mm

m

n

sel:n sig5:n

m^b[x8] m
^b
[x8]

m
^b
[x
8]

m^b[x8]

m
^b
[x8]

sig2:m

sig4:m

m

m^b[x8]^m^b[x8]

Feasible CPOG with X = 1110 has 8 nodes

We only require 8 computation resources

The assignments X = 1101, 1110 can be used as opcodes and one
can measure latency, power consumption etc in each mode.

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 28/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Transformations
Resource Estimation
Implementability

Propagate feasible behaviors assignment values to the CPOG

CPOG remains still connected and rooted
No causal loops

Then the CPOG is sequentially implementable

Algorithm 4 checks the implementability

Algorithm 4: isImplementable(G)
Input: Simplified CPOG G=〈V , E , X , ρ, φ〉, Feasible behavior assignments for X as F={〈f1〉,..,〈fk〉}
Output: True if implementable, else false
Let V = getFeasibleCPOGs(G ,F);

foreach CPOG Gi ∈ V do
if Gi has causal loops OR Gi is not weakly connected then

return false;
end

end
return True;

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 29/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Conclusion and Future Work
Further Reading

Outline of the talk

1 Motivation

2 Introduction to CPOGs

3 Introduction to MRICDF

4 MRICDF Models to CPOGs

5 Analysis and ASIP Synthesis

6 Conclusion and Future

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 29/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Conclusion and Future Work
Further Reading

Conclusion and Future Work

Conclusion

Proposed a new compilation scheme for Signal/mricdf
polychronous specifications based on CPOGs

Provided algorithms to derive CPOGs from Signal/mricdf
specifications

Future Work

Explore the aspect of sequential and concurrent
implementability by applying transformations on the CPOGs

Formal proofs

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 30/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Conclusion and Future Work
Further Reading

Further Reading for CPOGs and ASIPs

Mokhov, A., Sokolov, D., Rykunov, M., Yakovlev, A.
Formal modelling and transformations of processor instruction sets –
MEMOCODE 2011

Mokhov, A., Yakovlev, A.
Conditional Partial Order Graphs: Model, Synthesis and Application – IEEE
Transactions on Computers 2010

Kountouris, A.A., Wolinski, C.
Hierarchical conditional dependency graphs as a unifying design representation in
the CODESIS high-level synthesis system – ISSS 2000

Mokhov, A.,Iliasov, A.,Sokolov, D.,Rykunov, M.,Yakovlev, A.,Romanovsky, A.
Synthesis of Processor Instruction Sets from High-Level ISA Specifications –
IEEE Transactions on Computers 2013

Singh, S.
Hardware/Software Synthesis and Verification Using Esterel – CPA 2007

Mathworks Inc.
HDL Coder: Generate Verilog and VHDL code for FPGA and ASIC Designs

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 30/ 30

Motivation
Introduction to CPOGs

Introduction to MRICDF
MRICDF Models to CPOGs
Analysis and ASIP Synthesis

Conclusion and Future

Conclusion and Future Work
Further Reading

Further Reading for MRICDF and Polychrony

Paul Le Guernic, Jean-Pierre Talpin, Jean-Christophe Le Lann
Polychrony for system design – Journal for Circuits, Systems and Computers
2003

Bijoy A. Jose, Sandeep K. Shukla
An alternative polychronous model and synthesis methodology for model-driven
embedded software – ASP-DAC 2010

M Nanjundappa, M Kracht, J Ouy and SK Shukla
A novel technique for correct-by-construction concurrent code synthesis from
polychronous specifications – ACSD 2013

Bijoy A. Jose, Jason Pribble, Sandeep K. Shukla
Faster Software Synthesis Using Actor Elimination Techniques for Polychronous
Formalism – ACSD 2010

J. Brandt, M. Gemunde, K. Schneider, S. Shukla, and J.-P. Talpin.

Embedding polychrony into synchrony – In IEEE Transactions on Software

Engineering, 2012.

Sandeep K. Shukla, FERMAT Lab, Virginia Tech. Polychronous Specifications to ASIP 30/ 30

Any Questions??

Thank You!!

	Motivation
	Introduction to CPOGs
	Introduction to MRICDF
	MRICDF Models to CPOGs
	Analysis and ASIP Synthesis
	Conclusion and Future

