Formal Specification Comprehension The Art of Reading and Writing Z

Andreas Bollin, Alpen-Adria Universität Klagenfurt Dominik Rauner-Reithmayer, Carinthia University of Applied Sciences

CARINTHIA UNIVERSITY OF APPLIED SCIENCES

FAKULTÄT FÜR TECHNISCHE WISSENSCHAFTEN

Content in a Nutshell

- Motivation
 - Size and Complexity
 - Resistance and a chance
- Comprehending
 Specifications
 - Understandability
 - Preferences
 - Time/Effort
- A first Study
 - Setting
 - Results
- Conclusion and Discussion

Formal Specification Comprehension - The Art of Reading and Writing Z

Motivation (1/3)

3

Size and Complexity

- Our Systems and software are getting to new dimensions
 - Voyager ... 3 KLOC (1977), Cassini ... 10 KLOC (1997), Mars Rover 160 KLOC (2003), ISS ... 5 MLOC (2009), Boing 787 ... 6.4 MLOC (2011), General Motors GMC ... 100 MLOC (2011)

- Nearly **1,100 deaths** attributable to computer errors
 - stemming from poor to no specifications, not from incorrect implementations [McKenzie 01]

Formal Specification Comprehension - The Art of Reading and Writing Z

Motivation (2/3)

4

Resistance as no way out

- FS are beneficial artifacts during SW development (validation, verification) and maintenance phases (comprehension, concept identification).
- But,
 - not all stakeholders are able to speak and think in the same technical terms
 - developers do have different preferences in expressing (and documenting) their thoughts
 - even formal specification contain errors

Every activity raising comprehensibility helps in dealing with resistance

Motivation (3/3)

Problems and challenges:

- Logic, and with it
 - Mistakable Logic
 Expressions

 $\begin{aligned} DivByThree : \mathbb{P} \mathbb{N}_1 \\ \forall x : \mathbb{N}_1 \mid x \mod 3 = 0 \bullet x \in DivByThree \\ DivByThree : \mathbb{P} \mathbb{N}_1 \end{aligned}$

 $\forall x : \mathbb{N}_1 \bullet x \mod 3 = 0 \Rightarrow x \in DivByThree$

- Notation
 - Misleading and hard to understand notations [Gravel 90]

$$primes_1 == \{n : \mathbb{N} \mid n \ge 2 \land \\ \neg (\exists m : 2 \dots n \bullet n \bmod n) \\ \mathbb{N}_2 == \mathbb{N} \setminus \{0, 1\} \\ primes_2 == \mathbb{N}_2 \setminus \{n, m : \mathbb{N}_2 \bullet n * m\}$$

Comprehensibility

 Too complex (large) specifications and ill-structured specifications

6

Comprehending Specifications

- How to deal with this situation?
 - Taking a closer look at "quality" attributes of formal specifications with the focus on comprehensibility
 - The assumption is that, by raising comprehensibility, one is also very likely raising acceptability

Working Definition: A good formal specification is a syntactically and semantically correct specification which enables a lossless mapping between all the concepts in/behind the specification and the mental model of the specified system. The mapping process should **not** be **perceived as exhausting** and it should be **completed** within **reasonable time**.

The Study

- Guidelines as a way out?
 - Investigate the sense of style in reading and writing formal specifications
 - Which style (of writing) is less error prone
- For the study (conducted during the Winter term 2013) we focused on:
 - KQ1) Do common guidelines support the correct understanding of a formal specification?
 - KQ2) Do common guidelines support an easier and faster understanding of a formal specification?

The Study Setting (1/3)

- Following aspects have been taken into consideration:
 - Understandability of mathematical idioms (symbols in Z). Here, we focus on the relational override and the use of functions
 - Correct perception of the logical implication (following the observations of [Vinter, Loomes and Kornbrot 98]. Here, we focus on "natural order" [Gravell 91, p.4], logic equivalence and its use in orders that are not natural
 - Correct interpretation of **incomplete operations**
 - Correctness of (a subset of) the recommendations of Gravell [Gravell 91, p.12].

The Study Setting (2/3)

- Additionally, correctness of (a subset of) the recommendations of Gravell [Gravell 91, p.12]
 - G1 Prefer clarity to brevity
 - G2 Choose the state so as to minimize the invariant
 - G3 Choose the state to simplify the description of the operations
 - G4 Give an implication its natural order, or avoid implications entirely
 - G5 Give names to important concepts
 - G6 Where the mathematical idiom is commonly understood, use it.

The Study Setting (3/3)

- Skill of students have been quite high (n=25)
 - 6 Master, 19 Bachelor

- 28 European credit
 20 40 60 80
 points (~ 700 hours) on Math and Theoretical Computer Science
- overall performance is above 50% of achievable points
- Two (of 3) on-line questionnaires (Moodle):
 - Q1: **14 questions** in multiple choice select form
 - Q2: 24 tasks. In order to minimize the influence of the duration for understanding the problem domain:
 - 1. Description of the example in natural language
 - 2. Specification of the example in Z
 - 3. Question to decide if the specification represents the described situation in a correct manner

The Study Results (1/6)

- Correct Understanding
 - Mathematical Idioms (89% correctly understood)
 - Logical Implications
 - single implication (83%),
 - equivalent logical form using negation (82.5%)
 - implication contained in another implication (66%)
 - Incomplete Operations (63% correctly understood)
- Developers Preferences
 - G1 Prefer clarity to brevity s
 - Guideline: do not use Variant 2
 - Study result: variant 2 or variant 3

$SWITCH ::= on \mid off$	$\begin{tabular}{ c c c c } \hline Variant1 \\ \hline $s,s':SWITCH$ \\ \hline $s' \neq s$ \\ \hline \end{tabular}$
$\begin{tabular}{ c c c c } \hline Variant2 \\ \hline s,s':SWITCH \end{tabular}$	$\begin{tabular}{ c c c c } \hline Variant3_\\ \hline s,s':SWITCH \end{tabular}$
$(s = off \land s' = on) \lor (s = on \land s' = off)$	$s = off \Rightarrow s' = on$ $s = on \Rightarrow s' = off$

The Study Results (2/6)

- Developers Preferences (contd.)
 - G2 Choose the state so as to minimize the invariant
 - Example used: collection of an Item store
 - Guideline: prefer Variant 2
 - Study result: Variant 1

G3 Choose the state to simplify the description of the operations. Guideline: confirmed

The Study Results (3/6)

- Developers Preferences (contd.)
 - G4 Give an implication its natural order, or avoid implications entirely
 - Guideline: prefer variant 1
 - Study result: Variant 1, but Variant 3 also OK

The Study Results (4/6)

- Developers Preferences (contd.)
 - G5 Give names to important concepts
 - Guideline: prefer variant 2
 - Study result: no clear tendency
 - G6 Where the mathematical idiom is commonly understood, use it. Guideline: confirmed

[CUSTID, BOOKID, DATE, NAME] [ADDRESS, TITLE, AUTHOR] Variant1 $BookDB : BOOKID \rightarrow (AUTHOR \times TITLE)$ $CustDB : CUSTID \rightarrow (NAME \times ADDRESS)$ $LoanDB : BOOKID \rightarrow (CUSTID \times DATE)$ dom $LoanDB \subseteq \text{dom } BookDB$ $\forall c : CUSTID$ $|(\exists b : BOOKID; d : DATE \bullet b \mapsto (c, d) \in LoanDB) \bullet$ $c \in \text{dom } CustDB$ Variant2 author : BOOKID \rightarrow AUTHOR $title : BOOKID \rightarrow TITLE$ $name : CUSTID \rightarrow NAME$ $address: CUSTID \rightarrow ADDRESS$ borrower : BOOKID \rightarrow CUSTID $due: BOOKID \rightarrow DATE$ dom *borrower* = dom $due \subseteq$ dom *author* = dom *title* ran *borrower* \subseteq dom *name* = dom *address*

The Study Results (5/6)

- Duration a first look
 - We tested for the time needed to complete the task of comprehending a specification. Two different settings:
 (1) we kept the specification the same and varied the question

(2) we kept the problem description the same, but varied the

style of the specification

- Results:
- Small specifications: no correlation between time and correctness (weak positive, p=0.13)
- Larger specifications positive correlation

The Study Results (6/6)

- Duration a second look
 We checked for the relation between time needed and skills of the developers
 - Result:
 - Negative correlation ($\rho_{Pearson}$ = -0.57, p<0.007)

- Influence on time
- Influence on correctness

UNIVERSITY

OF APPLIED

Conclusion

- The study confirmed by large that common guidelines do support comprehensibility, but
 - not all of them are valid (at least in our setting)
 - 3 guidelines could not be confirmed totally ("prefer clarity to brevity", "choose the state so as to minimize the invariant", "give names to important concepts")
- We found another guideline:

"When giving a specification of an operation, always make it total!"

- This study is just a first step in a series of necessary investigations
 - We think that comprehension time and complexity are related.
 - Complementary guidelines will have to follow

18 Formal Specification Comprehension - The Art of Reading and Writing Z

Thank you!

Contact:

Andreas.Bollin@uni-klu.ac.at D.Rauner-Reithmayer@fh-kaernten.at

References

- [Gravell 91] A. M. Gravell. What is a Good Formal Specification? In Proceedings of the Fifth Annual Z User Meeting on Z User Workshop, pages 137-150, London, UK, 1991. Springer-Verlag.
- [McKenzie 01] D. MacKenzie, Mechanizing Proof: Computing, Risk, and Trust, MIT Press, 2001.
- [Vinter, Loomes, Kornbrot 98] R. Vinter, M. Loomes, and D. Kornbrot. Applying Software Metrics to Formal Specifications: A Cognitive Approach. In 5th International Symposium on Software Metrics, pages 216-223, Bethesda, Maryland, 1998. IEEE Computer Society.