
A Model for Provably
Secure Software Design

Alexander van den Berghe1, Koen Yskout1

Riccardo Scandariato2, Wouter Joosen1

1imec-DistriNet, KU Leuven, Belgium
2Software Engineering Division, Chalmers and Göteborg University, Sweden

FormaliSE 2017
27 May 2017

1

Setting the scene

2

Possible DFD for a banking system

Browser
Load

balancer

Login

Transaction
processor

Customer
store

Session
store

Transaction
store

username+password;
session id+transaction

session id

username+
password

session id

username

hashed password

session id+username

session id+
transaction

session id

username; nack

transaction

3

Possible DFD for a banking system

Browser
Load

balancer

Login

Transaction
processor

Customer
store

Session
store

Transaction
store

username+password;
session id+transaction

session id

username+
password

session id

username

hashed password

session id+username

session id+
transaction

session id

username; nack

transaction

4

Possible DFD for a banking system

Browser
Load

balancer

Login

Transaction
processor

Customer
store

Session
store

Transaction
store

username+password;
session id+transaction

session id

username+
password

session id

username

hashed password

session id+username

session id+
transaction

session id

username; nack

transaction

5

Our vision to improve on this

6

Our end goal

Formal metamodel

Modeller Catalogue Verifier

?

Security design and
security properties

Properties satisfied
or counterexamples

7

Model on familiar abstraction level

Formal metamodel

Modeller

Modeller Catalogue Verifier

?

Security design and
security properties

Properties satisfied
or counterexamples

8

Reuse well-known security solutions

Formal metamodel

Modeller Catalogue

Catalogue Verifier

?

Security design and
security properties

Properties satisfied
or counterexamples

9

Automate property verififaction

Formal metamodel

Modeller Catalogue Verifier

Verifier

?

Security design and
security properties

Properties satisfied
or counterexamples

10

All of this based on a formal foundation

Formal metamodel

Modeller Catalogue Verifier

?

Security design and
security properties

Properties satisfied
or counterexamples

11

A precise model for security design

12

Bird’s eye view of our model

Data operated on by processes that can be
connected to each other to form networks

Formalised using the Coq Proof Assistant

13

Recall the banking system DFD

Browser
Load

balancer

Transaction
dfdprocessor

Session
store

Transaction
store

username+password;
session id+transaction

session id

session id
session id+username

session id+
transaction

session id

username; nack

transaction

Login

Customer
store

username+
password

username

hashed password

Behaviour to model:
Compare hash value of received password to the one stored

id 4 +
cred 5

id 4

hashed (cred 5)

Security specific data types
cryptographic key, identity, credential, session identifier, signature

Transformed data
hashed, encrypted

Abstract non-security data type
plain

Collections to construct complex data structures

id 4

hashed (cred 5)

id 4 +
cred 5

Each encapsulating well-defined, possibly non-deterministic behaviour by
a state machine; and
sets of input and output queues

Authenticatorcred 5

Behaviour:
Verifies whether some provided identity and
credential match with a looked-up version

id 4

hashed (cred 5)

id 4 ACK or NACK

Hasher

Behaviour:
Calculates a hash value of its input data

Authenticatorcred 5

hashed
(cred 5)

Store
{(id 4, hashed (cred 5))}

Behaviour:
Stores data as key-value pair

id 4

[ACK,
hashed (cred 5)]

Hasher

14

Let us focus on the login process

Browser
Load

balancer

Transaction
dfdprocessor

Session
store

Transaction
store

username+password;
session id+transaction

session id

session id
session id+username

session id+
transaction

session id

username; nack

transaction

Login

Customer
store

username+
password

username

hashed password

Behaviour to model:
Compare hash value of received password to the one stored

id 4 +
cred 5

id 4

hashed (cred 5)

Security specific data types
cryptographic key, identity, credential, session identifier, signature

Transformed data
hashed, encrypted

Abstract non-security data type
plain

Collections to construct complex data structures

id 4

hashed (cred 5)

id 4 +
cred 5

Each encapsulating well-defined, possibly non-deterministic behaviour by
a state machine; and
sets of input and output queues

Authenticatorcred 5

Behaviour:
Verifies whether some provided identity and
credential match with a looked-up version

id 4

hashed (cred 5)

id 4 ACK or NACK

Hasher

Behaviour:
Calculates a hash value of its input data

Authenticatorcred 5

hashed
(cred 5)

Store
{(id 4, hashed (cred 5))}

Behaviour:
Stores data as key-value pair

id 4

[ACK,
hashed (cred 5)]

Hasher

15

The data types in our model

Browser
Load

balancer

Transaction
dfdprocessor

Session
store

Transaction
store

username+password;
session id+transaction

session id

session id
session id+username

session id+
transaction

session id

username; nack

transaction

Login

Customer
store

username+
password

username

hashed password

Behaviour to model:
Compare hash value of received password to the one stored

id 4 +
cred 5

id 4

hashed (cred 5)

Security specific data types
cryptographic key, identity, credential, session identifier, signature

Transformed data
hashed, encrypted

Abstract non-security data type
plain

Collections to construct complex data structures

id 4

hashed (cred 5)

id 4 +
cred 5

Each encapsulating well-defined, possibly non-deterministic behaviour by
a state machine; and
sets of input and output queues

Authenticatorcred 5

Behaviour:
Verifies whether some provided identity and
credential match with a looked-up version

id 4

hashed (cred 5)

id 4 ACK or NACK

Hasher

Behaviour:
Calculates a hash value of its input data

Authenticatorcred 5

hashed
(cred 5)

Store
{(id 4, hashed (cred 5))}

Behaviour:
Stores data as key-value pair

id 4

[ACK,
hashed (cred 5)]

Hasher

16

Pre-defined, off the shelf processes as building blocks

Browser
Load

balancer

Transaction
dfdprocessor

Session
store

Transaction
store

username+password;
session id+transaction

session id

session id
session id+username

session id+
transaction

session id

username; nack

transaction

Login

Customer
store

username+
password

username

hashed password

Behaviour to model:
Compare hash value of received password to the one stored

id 4 +
cred 5

id 4

hashed (cred 5)

Security specific data types
cryptographic key, identity, credential, session identifier, signature

Transformed data
hashed, encrypted

Abstract non-security data type
plain

Collections to construct complex data structures

id 4

hashed (cred 5)

id 4 +
cred 5

Each encapsulating well-defined, possibly non-deterministic behaviour by
a state machine; and
sets of input and output queues

Authenticatorcred 5

Behaviour:
Verifies whether some provided identity and
credential match with a looked-up version

id 4

hashed (cred 5)

id 4 ACK or NACK

Hasher

Behaviour:
Calculates a hash value of its input data

Authenticatorcred 5

hashed
(cred 5)

Store
{(id 4, hashed (cred 5))}

Behaviour:
Stores data as key-value pair

id 4

[ACK,
hashed (cred 5)]

Hasher

17

Introducing the Authenticator process

Browser
Load

balancer

Transaction
dfdprocessor

Session
store

Transaction
store

username+password;
session id+transaction

session id

session id
session id+username

session id+
transaction

session id

username; nack

transaction

Login

Customer
store

username+
password

username

hashed password

Behaviour to model:
Compare hash value of received password to the one stored

id 4 +
cred 5

id 4

hashed (cred 5)

Security specific data types
cryptographic key, identity, credential, session identifier, signature

Transformed data
hashed, encrypted

Abstract non-security data type
plain

Collections to construct complex data structures

id 4

hashed (cred 5)

id 4 +
cred 5

Each encapsulating well-defined, possibly non-deterministic behaviour by
a state machine; and
sets of input and output queues

Authenticatorcred 5

Behaviour:
Verifies whether some provided identity and
credential match with a looked-up version

id 4

hashed (cred 5)

id 4 ACK or NACK

Hasher

Behaviour:
Calculates a hash value of its input data

Authenticatorcred 5

hashed
(cred 5)

Store
{(id 4, hashed (cred 5))}

Behaviour:
Stores data as key-value pair

id 4

[ACK,
hashed (cred 5)]

Hasher

18

Explicitly calculating the hash value

Browser
Load

balancer

Transaction
dfdprocessor

Session
store

Transaction
store

username+password;
session id+transaction

session id

session id
session id+username

session id+
transaction

session id

username; nack

transaction

Login

Customer
store

username+
password

username

hashed password

Behaviour to model:
Compare hash value of received password to the one stored

id 4 +
cred 5

id 4

hashed (cred 5)

Security specific data types
cryptographic key, identity, credential, session identifier, signature

Transformed data
hashed, encrypted

Abstract non-security data type
plain

Collections to construct complex data structures

id 4

hashed (cred 5)

id 4 +
cred 5

Each encapsulating well-defined, possibly non-deterministic behaviour by
a state machine; and
sets of input and output queues

Authenticatorcred 5

Behaviour:
Verifies whether some provided identity and
credential match with a looked-up version

id 4

hashed (cred 5)

id 4 ACK or NACK

Hasher

Behaviour:
Calculates a hash value of its input data

Authenticatorcred 5

hashed
(cred 5)

Store
{(id 4, hashed (cred 5))}

Behaviour:
Stores data as key-value pair

id 4

[ACK,
hashed (cred 5)]

Hasher

19

Replace the Customer Store by our Store process

Browser
Load

balancer

Transaction
dfdprocessor

Session
store

Transaction
store

username+password;
session id+transaction

session id

session id
session id+username

session id+
transaction

session id

username; nack

transaction

Login

Customer
store

username+
password

username

hashed password

Behaviour to model:
Compare hash value of received password to the one stored

id 4 +
cred 5

id 4

hashed (cred 5)

Security specific data types
cryptographic key, identity, credential, session identifier, signature

Transformed data
hashed, encrypted

Abstract non-security data type
plain

Collections to construct complex data structures

id 4

hashed (cred 5)

id 4 +
cred 5

Each encapsulating well-defined, possibly non-deterministic behaviour by
a state machine; and
sets of input and output queues

Authenticatorcred 5

Behaviour:
Verifies whether some provided identity and
credential match with a looked-up version

id 4

hashed (cred 5)

id 4 ACK or NACK

Hasher

Behaviour:
Calculates a hash value of its input data

Authenticatorcred 5

hashed
(cred 5)

Store
{(id 4, hashed (cred 5))}

Behaviour:
Stores data as key-value pair

id 4

[ACK,
hashed (cred 5)]

Hasher

20

Security design as a “network” of processes

Network , a set of processes connected by channels

Transition relation between 2 networks:

1. local state transition for each process; and

2. propagate (some) process outputs along connected channel

⇒ Can construct an infinite sequence of successive networks

21

Apply to the whole banking DFD

22

The banking system using our model

Attacker

Encrypter

User
{username,
password,

transaction}

Source
{symk *}

Decrypter

Decrypter Encrypter

Source
{symk *}

Enforcer

Authenticator

Enforcer

Customer
store

Transaction
store

[username, password]
[session id, transaction]

session id

[username, password]
session id

[session id,
 transaction]

Business
logic

Browser Load balancer
Login

Transaction processor

Key

Copier

Splitter

Joiner

Store
Business

logic

All other
processes

Discarder

Composer

Decomposer

Enforcer

Authoriser

Enforcer

transaction

session id

username

password

Attacker

ACK/NACK

username

[ACK, hashed password]

Session
store

Source
{session id}

session id
ACK/NACK

username

transaction

session id

ACK/NACK

session id

D W

R

R

W

[transaction id, transaction]

[username, transaction]

Hasher

R
W

D

Store with Read, Write
and Delete queues

R

[x, y]

collection data flow

23

Username/password authentication with sessions

Attacker

Encrypter

User
{username,
password,

transaction}

Source
{symk *}

Decrypter

Decrypter Encrypter

Source
{symk *}

Enforcer

Authenticator

Enforcer

Customer
store

Transaction
store

[username, password]
[session id, transaction]

session id

[username, password]
session id

[session id,
 transaction]

Business
logic

Browser Load balancer
Login

Transaction processor

Key

Copier

Splitter

Joiner

Store
Business

logic

All other
processes

Discarder

Composer

Decomposer

Enforcer

Authoriser

Enforcer

transaction

session id

username

password

Attacker

ACK/NACK

username

[ACK, hashed password]

Session
store

Source
{session id}

session id
ACK/NACK

username

transaction

session id

ACK/NACK

session id

D W

R

R

W

[transaction id, transaction]

[username, transaction]

Hasher

R
W

D

Store with Read, Write
and Delete queues

R

[x, y]

collection data flow

24

Simplified HTTPS

Attacker

Encrypter

User
{username,
password,

transaction}

Source
{symk *}

Decrypter

Decrypter Encrypter

Source
{symk *}

Enforcer

Authenticator

Enforcer

Customer
store

Transaction
store

[username, password]
[session id, transaction]

session id

[username, password]
session id

[session id,
 transaction]

Business
logic

Browser Load balancer
Login

Transaction processor

Key

Copier

Splitter

Joiner

Store
Business

logic

All other
processes

Discarder

Composer

Decomposer

Enforcer

Authoriser

Enforcer

transaction

session id

username

password

Attacker

ACK/NACK

username

[ACK, hashed password]

Session
store

Source
{session id}

session id
ACK/NACK

username

transaction

session id

ACK/NACK

session id

D W

R

R

W

[transaction id, transaction]

[username, transaction]

Hasher

R
W

D

Store with Read, Write
and Delete queues

R

[x, y]

collection data flow

25

Incorporated attacker model

Attacker

Encrypter

User
{username,
password,

transaction}

Source
{symk *}

Decrypter

Decrypter Encrypter

Source
{symk *}

Enforcer

Authenticator

Enforcer

Customer
store

Transaction
store

[username, password]
[session id, transaction]

session id

[username, password]
session id

[session id,
 transaction]

Business
logic

Browser Load balancer
Login

Transaction processor

Key

Copier

Splitter

Joiner

Store
Business

logic

All other
processes

Discarder

Composer

Decomposer

Enforcer

Authoriser

Enforcer

transaction

session id

username

password

Attacker

ACK/NACK

username

[ACK, hashed password]

Session
store

Source
{session id}

session id
ACK/NACK

username

transaction

session id

ACK/NACK

session id

D W

R

R

W

[transaction id, transaction]

[username, transaction]

Hasher

R
W

D

Store with Read, Write
and Delete queues

R

[x, y]

collection data flow

26

Reasoning about security

27

Proving data origin authentication for transactions

Formalised using Linear-time Temporal Logic (LTL)
�(in input tx bl =⇒ (� in output tx user))

Hypothesis
transaction tx arrived as input for the business logic

Goal
transaction tx must have been sent by user earlier

Intuition of proof
start at business logic and “step backwards” process by process

28

Some resulting assmptions
that became explicit while proving

Attacker cannot guess user’s password (i.e. brute force)
Reasonable if good password policy is enforced.

Attacker cannot decrypt data without correct key
Reasonable if strong encryption is used.

⇒ Should be verified against whole design (incl. documentation)

29

Conclusion

30

Recall our vision

Formal metamodel

Modeller Catalogue Verifier

Security design and
security properties

Properties satisfied
or counterexamples

Security design as network,
security properties and
manually written proof

Catalogue

Currently extending model
with process composition

Performed a user study with ±100 master students
to assess understandability of model (elements)

Sneak peek: students indicated they found
model (elements) easy to understand

Modeller Verifier

31

Current state of affairs

Formal metamodel

Modeller Catalogue Verifier

Security design and
security properties

Properties satisfied
or counterexamples

Security design as network,
security properties and
manually written proof

Catalogue

Currently extending model
with process composition

Performed a user study with ±100 master students
to assess understandability of model (elements)

Sneak peek: students indicated they found
model (elements) easy to understand

Modeller Verifier

32

Initial steps towards catalogue

Formal metamodel

Modeller Catalogue Verifier

Security design and
security properties

Properties satisfied
or counterexamples

Security design as network,
security properties and
manually written proof

Catalogue

Currently extending model
with process composition

Performed a user study with ±100 master students
to assess understandability of model (elements)

Sneak peek: students indicated they found
model (elements) easy to understand

Modeller Verifier

33

Assessing the model as foundation

Formal metamodel

Modeller Catalogue Verifier

Security design and
security properties

Properties satisfied
or counterexamples

Security design as network,
security properties and
manually written proof

Catalogue

Currently extending model
with process composition

Performed a user study with ±100 master students
to assess understandability of model (elements)

Sneak peek: students indicated they found
model (elements) easy to understand

Modeller Verifier

34

Further down the road

Formal metamodel

Modeller Catalogue Verifier

Security design and
security properties

Properties satisfied
or counterexamples

Security design as network,
security properties and
manually written proof

Catalogue

Currently extending model
with process composition

Performed a user study with ±100 master students
to assess understandability of model (elements)

Sneak peek: students indicated they found
model (elements) easy to understand

Modeller Verifier

35

A Model for Provably
Secure Software Design

Alexander van den Berghe1, Koen Yskout1

Riccardo Scandariato2, Wouter Joosen1

1imec-DistriNet, KU Leuven, Belgium
2Software Engineering Division, Chalmers and Göteborg University, Sweden

FormaliSE 2017
27 May 2017

36

Code samples

37

Data

Inductive Data : Type :=

| plain: nat → nat → Data

| key: CryptoKey → Data

| id: Identity → Data

| cred: Credential → Data

| sid: SessionId → Data

| sig: Data → CryptoKey → Data

| enc: Data → CryptoKey → Data

| hashed: Data → Data

| collection: nat → list Data → Data

38

Hasher process

Inductive HState :=

| h_idle: HState

| h_hashing: Data → HState.

Record State := mk_hstate {

hstate: HState; iostate: IOState }.

Inductive HTrans : State → State → Prop :=

| h_read: ∀ (d : Data) (io io' : IOState),

(Some d, io') = read_input io IN_DATA →
HTrans (mk_hstate h_idle io)

(mk_hstate (h_hashing d) io')

| h_write: ∀ (d : Data) (io io' : IOState),

io' = write_output io OUT_DATA (hashed d) →
HTrans (mk_hstate (h_hashing d) io)

(mk_hstate h_idle io').

39

Network

Record Channel_End := mk_end {

processID: ProcessID;

queue_name: QueueName

}.

Record Channel := mk_chan {

source: Channel_End;

target: Channel_End

}.

Record Network := nw {

processes: list Process;

channels: list Channel

}.

40

Network transition relation

Inductive N_step : Network → Network → Prop :=

| n_step: ∀ ps ps' cs cs_prop,

step_all ps ps' →
incl cs_prop cs →
N_step (nw ps cs)

(nw (propagate_all cs_prop ps') cs).

41

Confidential

Definition confidential (d : Data) (n : NetworkWF) :=

∀ s, path s n → s@0 |= [] (no_attacker_knows d).

42

Data origin authentication

Definition data_origin_authentication (f : Data → Prop)

(rcv snd : ProcessID) (qr qs : QueueName) (n : NetworkWF) :=

∀ s d, path s n → f d →
s@0 |= [] (implies (contained_in_input d qr rcv)

(�(contained_in_output d qs snd))).

43

Some initial data from user study

The semantics of the model kind elements (processes, channels, networks) are
straightforward to understand.

44

Overview of available processes

45

Security processes

Process Description

Hasher Calculates a hash value of its input data.
Encrypter Encrypts input data with a provided cryptographic key.
Decrypter Decrypts input data with a provided cryptographic key.
Authenticator Verifies whether an identity and credential match with a looked-up

version.
Enforcer Enforces input data to be cleared before passing on.
Authoriser Encapsulates an authorisation policy by non-deterministically allowing

or denying requests
Generator Generates a digital signature given a data element and a cryptographic

key.
Verifier Verifies whether a data element and signature match.

46

External processes

Process Description

User Non-malicious user interacting with the system.
Attacker Malicious user interacting with the system.
Source Produces data satisfying a pre-defined property.
Sink Consumes its input.

47

Auxiliary processes

Process Description

Business Encapsulates the non-security related functionality of the system under
design.

Store Stores data as key-value pairs.
Comparator Compares two data elements using a decidable function.
Collector Collects the first data element of its n first input queues into a collection.
Disperser Disperses a collection into its contained elements.
Dropper Non-deterministically chooses to forward or discard its input data.
Discarder Discards its input data if directed to by another process.
Joiner Outputs data from a non-deterministically selected input queue.
Copier Copies its input data to each of its output queues.
Fork Outputs input data to a non-deterministically selected output queue.
Latch Remembers its last received input data and continues to output it.

48

	Our vision to improve on this
	A precise model for security design
	Apply to the whole banking DFD
	Reasoning about security
	Conclusion

