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Our vision to improve on this
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Model on familiar abstraction level
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Reuse well-known security solutions
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Automate property verififaction
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All of this based on a formal foundation
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A precise model for security design
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Bird’s eye view of our model

Data operated on by processes that can be
connected to each other to form networks

Formalised using the Coq Proof Assistant
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Recall the banking system DFD
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Let us focus on the login process
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The data types in our model
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Pre-defined, off the shelf processes as building blocks
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Introducing the Authenticator process
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Explicitly calculating the hash value
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Replace the Customer Store by our Store process
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Security design as a “network” of processes

Network , a set of processes connected by channels

Transition relation between 2 networks:

1. local state transition for each process; and

2. propagate (some) process outputs along connected channel

⇒ Can construct an infinite sequence of successive networks
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Apply to the whole banking DFD
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The banking system using our model
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Username/password authentication with sessions

Attacker

Encrypter

User
{username,
password,

transaction}

Source
{symk *}

Decrypter

Decrypter Encrypter

Source
{symk *}

Enforcer

Authenticator

Enforcer

Customer
store

Transaction
store

[username, password]
[session id, transaction]

session id

[username, password]
session id

[session id,
 transaction]

Business
logic

Browser Load balancer
Login

Transaction processor

Key

Copier

Splitter

Joiner

Store
Business

logic

All other
processes

Discarder

Composer

Decomposer

Enforcer

Authoriser

Enforcer

transaction

session id

username

password

Attacker

ACK/NACK

username

[ACK, hashed password]

Session
store

Source
{session id}

session id
ACK/NACK

username

transaction

session id

ACK/NACK

session id

D W

R

R

W

[transaction id, transaction ]

[username, transaction ]

Hasher

R
W

D

Store with Read, Write
and Delete queues 

R

[x, y]

collection data flow

24



Simplified HTTPS
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Incorporated attacker model
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Reasoning about security
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Proving data origin authentication for transactions

Formalised using Linear-time Temporal Logic (LTL)
�(in input tx bl =⇒ ( � in output tx user))

Hypothesis
transaction tx arrived as input for the business logic

Goal
transaction tx must have been sent by user earlier

Intuition of proof
start at business logic and “step backwards” process by process
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Some resulting assmptions
that became explicit while proving

Attacker cannot guess user’s password (i.e. brute force)
Reasonable if good password policy is enforced.

Attacker cannot decrypt data without correct key
Reasonable if strong encryption is used.

⇒ Should be verified against whole design (incl. documentation)
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Conclusion
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Recall our vision

Formal metamodel

Modeller Catalogue Verifier

Security design and
security properties

Properties satisfied
or counterexamples

Security design as network,
security properties and
manually written proof

Catalogue

Currently extending model
with process composition

Performed a user study with ±100 master students
to assess understandability of model (elements)

Sneak peek: students indicated they found
model (elements) easy to understand

Modeller Verifier

31



Current state of affairs
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Initial steps towards catalogue
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Assessing the model as foundation
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Further down the road
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Code samples

37



Data

Inductive Data : Type :=

| plain: nat → nat → Data

| key: CryptoKey → Data

| id: Identity → Data

| cred: Credential → Data

| sid: SessionId → Data

| sig: Data → CryptoKey → Data

| enc: Data → CryptoKey → Data

| hashed: Data → Data

| collection: nat → list Data → Data
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Hasher process

Inductive HState :=

| h_idle: HState

| h_hashing: Data → HState.

Record State := mk_hstate {

hstate: HState; iostate: IOState }.

Inductive HTrans : State → State → Prop :=

| h_read: ∀ (d : Data) (io io' : IOState),

(Some d, io') = read_input io IN_DATA →
HTrans (mk_hstate h_idle io)

(mk_hstate (h_hashing d) io')

| h_write: ∀ (d : Data) (io io' : IOState),

io' = write_output io OUT_DATA (hashed d) →
HTrans (mk_hstate (h_hashing d) io)

(mk_hstate h_idle io').
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Network

Record Channel_End := mk_end {

processID: ProcessID;

queue_name: QueueName

}.

Record Channel := mk_chan {

source: Channel_End;

target: Channel_End

}.

Record Network := nw {

processes: list Process;

channels: list Channel

}.
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Network transition relation

Inductive N_step : Network → Network → Prop :=

| n_step: ∀ ps ps' cs cs_prop,

step_all ps ps' →
incl cs_prop cs →
N_step (nw ps cs)

(nw (propagate_all cs_prop ps') cs).
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Confidential

Definition confidential (d : Data) (n : NetworkWF) :=

∀ s, path s n → s@0 |= [] (no_attacker_knows d).

42



Data origin authentication

Definition data_origin_authentication (f : Data → Prop)

(rcv snd : ProcessID) (qr qs : QueueName) (n : NetworkWF) :=

∀ s d, path s n → f d →
s@0 |= [] (implies (contained_in_input d qr rcv)

( �(contained_in_output d qs snd))).
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Some initial data from user study

The semantics of the model kind elements (processes, channels, networks) are
straightforward to understand.
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Overview of available processes
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Security processes

Process Description

Hasher Calculates a hash value of its input data.
Encrypter Encrypts input data with a provided cryptographic key.
Decrypter Decrypts input data with a provided cryptographic key.
Authenticator Verifies whether an identity and credential match with a looked-up

version.
Enforcer Enforces input data to be cleared before passing on.
Authoriser Encapsulates an authorisation policy by non-deterministically allowing

or denying requests
Generator Generates a digital signature given a data element and a cryptographic

key.
Verifier Verifies whether a data element and signature match.

46



External processes

Process Description

User Non-malicious user interacting with the system.
Attacker Malicious user interacting with the system.
Source Produces data satisfying a pre-defined property.
Sink Consumes its input.
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Auxiliary processes

Process Description

Business Encapsulates the non-security related functionality of the system under
design.

Store Stores data as key-value pairs.
Comparator Compares two data elements using a decidable function.
Collector Collects the first data element of its n first input queues into a collection.
Disperser Disperses a collection into its contained elements.
Dropper Non-deterministically chooses to forward or discard its input data.
Discarder Discards its input data if directed to by another process.
Joiner Outputs data from a non-deterministically selected input queue.
Copier Copies its input data to each of its output queues.
Fork Outputs input data to a non-deterministically selected output queue.
Latch Remembers its last received input data and continues to output it.
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