
Partition-based Coverage Metrics and
Type-guided Search in Concolic Testing

for JavaScript Applications

27 May 2017, FormaliSE

Sora Bae, Joonyoung Park, Sukyoung Ryu
KAIST

JavaScript Applications

2

JavaScript App Bugs

3

The main menu of RunRabbitRun

JavaScript App Bugs

4

The main menu of RunRabbitRun

Play

JavaScript App Bugs

5

Playing

JavaScript App Bugs

6

The main menu of RunRabbitRun

Settings

JavaScript App Bugs

7

An uncaught TypeError on RunRabbitRun

JavaScript App Bugs

8

An uncaught TypeError on RunRabbitRun

bestScores
bestScores[0] = null; 
bestScores[1] = null; 
bestScores[2] = null;

JavaScript App Bugs

9

bestScores = undefined; if(!bestScores) bestScores = [null, null, null]

Main Play

Settings

Main (Play Main)+ Setting Clear : Ok

Main Setting Clear : Error!

10

Concolic Testing

??

11

Concolic Testing
Statically Typed

Dynamically Typed

Type!!??

12

Traditional Concolic Testing
• Test requirements

• Structural requirements

• (compile-time checking)

• Input space of symbolic variables

• A language restricts possible values of symbolic
variables by types.

13

JavaScript Concolic Testing
• Test requirements

• Structural requirements

• Implicit type conversion, type errors

• Input space of symbolic variables

• A tester fixes types of symbolic variables.

• A variable can have 6 kinds of types: Undefined, Null,
Boolean, Number, String, Object

14

JavaScript Concolic Testing
 1: //x : symbolic variable
 2: function f (x) {
 3: if (x.y) { //Error x: undefined, null
 4: //x: object
 5: //x.y: true, number, string, object
 6: } else {
 7: //x: boolean, number, string, object
 8: //x.y: undefined, null, false, 0, “”
 9: }
10: }

15

• Partition-based Coverage Metric

• Type-guided Search

Structural coverage

Input space partitioning
×

1) Type space

2) Structural space

Partition-based Coverage Metric

16

• Structural Graph Coverage

• Programs are represented by the control flow graph

• e.g. Statement, Branch, MC/DC

• Input Space Partitioning

• Input spaces are split into pairwise disjoint blocks.

• e.g. N-wise, base choice, all combinations

Coverage Criteria

17

s: symbolic variable n: branch

Coverage Criteria

18

Coverage Criteria

19

s1@Undefined, s1@Number, …
7n requirements

Coverage Criteria

20

x1@True, x1@False, …
2m requirements (branch coverage)

Coverage Criteria

21

Pair-wise: (s1@Undefined, x1@True), (s1@Number, x1@True), …
14nm requirements

Coverage Criteria

22

Total O(nm) requirements

Type-guided Search

23

• Search space 
= (type space) × (structural space)

• Type-guided Search: two-phased search

• 1) Selecting type 
- Fixed type combination

• 2) Selecting structural point 
- Constraint solving for fixed types 
- Traditional strategies

Implementation

24

• 1) Selecting type

• Type space

• AllTypes: all possible types of symbolic variables

• Expected: only used types analyzed by a whole
program static analysis

• Type selection - Pair-wise selection algorithm

• 2) Branch selection - CarFast: Prioritized greedy strategy

Evaluation

• RQ1. Coverage Metric 
Fault Detect Capability: Given a target coverage goal,
how many faults are detected in different coverage
metrics?

• RQ2. Search Strategy 
Program Characteristic: Which type-guided search
strategy achieves higher coverage in what programs?

25

Result: RQ1

26

Result: RQ2

27

Conclusion

28

• Challenges of JavaScript concolic testing

• Type-related test requirements

• Searching for all possible types

• Partition-based coverage metrics

• Type-guided search

• Further research opportunities

• Advanced search strategies

• Type constraint generating/solving

Q&A

29

Appendix

30

31

Traditional Concolic Testing
• Test requirements

• Compiled languages: structural requirements (+ compile-time checking)

• Interpreted languages: structural requirements

• Input space of symbolic variables

• Statically typed languages

• A language restricts types of symbolic variables.

• Dynamically typed language

• A tester fixes types of symbolic variables.

32

Traditional Concolic Testing
• Test requirements

• Compiled languages

• Interpreted languages

• Input space of symbolic variables

• Statically typed languages

• Dynamically typed language

33

Traditional Concolic Testing
• Test requirements

• Compiled languages

• Passing compile-time checks (implicitly included)

• Structural requirements

• Interpreted languages

• (No compile-time checking)

• Structural requirements

34

Traditional Concolic Testing
• Input space of symbolic variables

• Statically typed languages

• A language restricts types of symbolic variables.

• Dynamically typed language

• A tester fixes types of symbolic variables.

• Types does not prune input spaces.

JavaScript App Bugs

35

An uncaught TypeError on RunRabbitRun

