
Mechanical Verification
of Interactive Programs

specified by Use Cases

Guillaume Claret (guillaume.claret@inria.fr)
Yann Régis-Gianas (yrg@pps.univ-paris-diderot.fr)

INRIA π.R2 – CNRS PPS – Université Paris Diderot

1/46

How to mechanically prove that
a program respects its formal specification?

2/46

Software certification: a model-centric approach

IMPLEMENTATION
MODEL

ACTUAL
IMPLEMENTATION

FORMAL
SPECIFICATION1 2

Languages

I Specification: Temporal logic, Hoare triples, . . .
I Implementation model : Process calculus, Labelled transition systems, . . .
I Actual implementation: C, C++, Ada, Java, . . .

Tools and Techniques

I For 2 : model-checking, deductive reasoning, abstract interpretation, . . .
I For 1 : refinement, certified encoding, faith, . . .

3/46

Software certification: a language-centric approach

ACTUAL
IMPLEMENTATION

FORMAL
SPECIFICATION

Languages

I Specification: Types as a universal language.
I Implementation: High-level programming languages with formal semantics.

Tools and Techniques

I Curry-Howard correspondence:
I a type is a formula ;
I a program of that type is a proof of that formula.

I Software-Proof Co-Design.

4/46

The Coq proof assistant

http://coq.inria.fr

In a nutshell

I Almost 30 years of research in Logic and Computer Science.
I The Calculus of Inductive Constructions:

Both a programming language and a logic.
I CiC enjoys the Curry-Howard correspondence.
I A very expressive logic.
I A high-level functional programming language.

Achievements

I Mathematical side: four colors, Feit Thompson, . . .
I Computer science side: CompCert, . . .
I ACM awards.

5/46

http://coq.inria.fr

The Coq proof assistant : De Bruijn architecture at work

KERNEL
(CiC Type-checker)

INTERACTIVE
PROOF
ENGINE

EXTRACTION

Program & Predicate
definitions
Theorems to prove

Goals

Well-typed programs

Certified
programs

Ocaml
programs

TRUSTED BASE

6/46

The Coq proof assistant

7/46

This talk

How to write and prove correct
interactive programs

within the Coq proof assistant?

8/46

Three questions

1. How to represent interactive programs in Coq?
2. What is the semantics of these programs?
3. How to prove properties about the behavior of these programs?

9/46

How to represent interactive programs in Coq?

10/46

Coq is a purely functional programming language

Key programming mechanisms

I Higher-order functions
I Pattern matching over inductively-defined data
I Dependent types
I Module system and type classes.

Restrictions (because it is also a logic)

I Effect-free: no assignment, no input-output, . . .
I Normalizing : all computations must terminate.

Interactive programs do not terminate and perform I/O . . .
Are they out of Coq’s scope?

11/46

Coq is a purely functional programming language

Key programming mechanisms

I Higher-order functions
I Pattern matching over inductively-defined data
I Dependent types
I Module system and type classes.

Restrictions (because it is also a logic)

I Effect-free: no assignment, no input-output, . . .
I Normalizing : all computations must terminate.

Interactive programs do not terminate and perform I/O . . .
Are they out of Coq’s scope?

11/46

Coq can represent interactive computations

An old wisdom from Haskell programmers:

Even if a purely functional language cannot do effects,
it can represent them thanks to monads.

The trick (to be efficient):

The compiler can optimize their interpretation
using actual effects.

12/46

A type for commands and answers

Definitions
Assume that Command.t is the type for commands and that there exists a
dependent type answer of type:

Command.t→ Type

representing the type of the environment answer to a command.

Examples

ReadFile : string→ Command.t
Log : string→ Command.t

answer ReadFile = option string
answer Log = unit

13/46

A representation of interactive computations

The type of interactive computation C producing a value of type A is:

Inductive C (A : Type) : Type :=
| Ret : ∀ (x : A), C A
| Call : ∀ (c : Command.t), (answer c → C A)→ C A.

This means that a computation can be either:

I a pure expression x of type A;
I a call to the environment with an argument c of type Command.t and a

handler waiting for an answer of type answer c, dependent on the value
of the command.

14/46

A representation of interactive computations

Remarks

I A computation is nothing but a well-typed Abstract Syntax Tree.
I A computation combines pure code fragments to form more complex

programs interacting with the outer system.
I Strictly speaking, computations are not a monad but an embedded DSL

(close the algebraic effects of the Idris programming language).

15/46

Example

1 Definition print_readme : C unit :=
2 Call (ReadFile "README") (fun text⇒
3 match text with
4 | None⇒ Ret ()
5 | Some text⇒
6 Call (Log text) (fun _⇒
7 Ret ())
8 end).

16/46

Syntactic sugar

call! x := c in e ⇐⇒ Call c (λx . e)
ret e ⇐⇒ Ret e

17/46

Example

1 Definition print_readme : C unit :=
2 call! text := ReadFile "README" in
3 match text with
4 | None⇒ ret ()
5 | Some text⇒
6 call! r := Log text in
7 ret ()
8 end.

18/46

What is the semantics of these programs?

19/46

Semantics by completion

Computations are incomplete
In general, a computation of type C A cannot produce a value of type A
because it lacks the answers of the environment to the commands performed
by the program.

How should we complete a computation
with these pieces of information?

20/46

Semantics by completion

Computations are incomplete
In general, a computation of type C A cannot produce a value of type A
because it lacks the answers of the environment to the commands performed
by the program.

How should we complete a computation
with these pieces of information?

20/46

A dependent type to represent the environment answers

The type R A c is the type for the runs of the computation c of type CA:

Inductive R (A : Type) : C A→ Type :=
| RunRet : ∀ (x : A), RA (Ret x)
| RunCall : ∀ (c : Command.t) (a : answer c),
∀ {handler : answer c → C A}, (RA (handler a))→
RA (Call c handler).

A run can be either:

I a run of a Ret that carries the pure value x returned by a computation;
I a run of a Call of a command c that received an answer a of the

corresponding type and a run of a handler applied to the answer a.

21/46

Example

Definition run_print_readme : Run unit print_readme :=
RunCall (ReadFile "README") (Some "Content of the file") (
RunCall (Log "Content of the file") () (
RunRet ())).

22/46

Big-step semantics

Fixpoint eval {A : Type} {c : C A} (r : RA c) : A :=
match r with
| RunRet x ⇒ x
| RunCall c a h r ⇒ eval r
end.

23/46

Trace-based semantics

Fixpoint trace {A : Type} {c : C A} (r : RA c)
: list {c : Command.t & answer c} :=
match r with
| RunRet x ⇒ []
| RunCall c a h r ⇒ (c, a) :: trace r
end.

24/46

Compilation

KERNEL
(CiC Type-checker)

INTERACTIVE
PROOF
ENGINE

CUSTOMIZED
EXTRACTION

Program definitions
Theorems to prove

Goals

Well-typed programs

Certified
programs

Ocaml
programs

TRUSTED BASE

25/46

How to prove properties about these programs?

26/46

Theorems based on the semantics

Standard correctness properties

I Given a computation c, any extensional property P about the final result
of the program can be stated as soon as we do a universal quantification
over runs:

∀(r : RA c),P(eval r)
I Any intentional property P about the interaction between the program

and its environment can also be stated:

∀(r : RA c),P(trace r)

Yet, in the case of an interactive program, specifications are more naturally
written as the union of use-case scenarios.

27/46

Scenarios

Definition
A scenario is a (possibly infinite) family of runs parameterized by user inputs.

Scenario as specification
A well-typed scenario is a valid specification for the interaction between the
environment (which includes the user) and the program.

Scenarios are formal representations for use-cases.

Type-checking a scenario validates the implementation
with respect to the use-cases it represents.

28/46

Scenarios

Definition
A scenario is a (possibly infinite) family of runs parameterized by user inputs.

Scenario as specification
A well-typed scenario is a valid specification for the interaction between the
environment (which includes the user) and the program.

Scenarios are formal representations for use-cases.

Type-checking a scenario validates the implementation
with respect to the use-cases it represents.

28/46

Example

Definition run_print_readme_ok content : Run unit print_readme :=
RunCall (ReadFile "README") (Some content) (
RunCall (Log content) () (
RunRet ())).

Definition run_print_readme_ko : Run unit print_readme :=
RunCall (ReadFile "README") None (
RunRet ())).

29/46

Case study: Development of a blog engine

30/46

Is that approach realistic? (Work in Progress)

A small experiment

I We develop a blog engine, i.e. a server of type:

server : Path.t→ Cookies.t→ C Response.t

I This function handles one request from the client. A request is a path (an
URL, like /login) and the status of the client’s cookies. A response is:

I a MIME type;
I a new set of cookies;
I a body, typically some HTML content.

I 786 lines of Coq
I By construction: deterministic, no exceptions, always terminates.

31/46

The type for paths

Constructor Arguments Root path
NotFound

WrongArguments
Static list string /static
Index /
Login /login
Logout /logout
PostAdd /posts/add

PostDoAdd string × date /posts/do_add
PostEdit string /posts/edit

PostDoEdit string × string /posts/do_edit
PostDoDelete string /posts/do_delete

PostShow string /posts/show

32/46

The type for commands

Command Arguments Answer
ReadFile string option string

UpdateFile string × string bool
DeleteFile string bool
ListPosts string option (list header)

Log string unit

33/46

Interactive constructions of scenarios

I We wrote scenarios for all the possible requests to the blog engine.
I It was almost impossible to correctly write formal scenarios manually:

there are too many details and cases to consider.
I Hopefully, scenarios can be written interactively with the help of the

interactive proof engine of Coq.
I The type system makes sure that no case is missed.

The interactive proof engine of Coq is here used as
a symbolic debugger.

34/46

Interactive constructions of scenarios

I We wrote scenarios for all the possible requests to the blog engine.
I It was almost impossible to correctly write formal scenarios manually:

there are too many details and cases to consider.
I Hopefully, scenarios can be written interactively with the help of the

interactive proof engine of Coq.
I The type system makes sure that no case is missed.

The interactive proof engine of Coq is here used as
a symbolic debugger.

34/46

Example

Consider the following use-case:

1. The user connects to the index page URL.
2. The blog calls the file system to list the available posts.
3. In case of error, a log message is printed on the server console.
4. Otherwise, the index page is displayed with the list of posts.

35/46

Example

This amounts to find a proof for:

1 Definition index_ok (cookies : Cookies.t)(headers : list Header.t)
2 : Run.t (Main.server Path.Index cookies).

36/46

Example

After entering these lines to Coq, a goal is produced:

1 subgoals
cookies : Cookies.t
headers : list Header.t
______________________________________(1/1)
Run.t (Main.server Path.Index cookies)

This means that we have two symbolic parameters, cookies and headers, and
aim to construct a run of the server handler applied to the index path and the
cookies. We enter the simpl command to partially evaluate the computation
using the fact that Path.Index is a concrete value.

37/46

Example

1 Definition index_ok (cookies : Cookies.t)
2 (headers : list Header.t)
3 : Run.t (Main.server Path.Index cookies).
4 simpl.

38/46

Example
We get:

1 subgoals
cookies : Cookies.t
headers : list Header.t
______________________________________(1/1)
Run.t (Main.Controller.index (Cookies.is_logged cookies))

The next call must be ListPosts to some folder, to which we answer Some
headers:

apply (RunCall (ListPosts _) (Some headers)).

The Coq system validates our guess, unifying modulo evaluation the
computation:

Main.Controller.index (Cookies.is_logged cookies)

with a computation of the form:

Call (ListPosts . . .) (fun a⇒ . . .)
39/46

Example

1 Definition index_ok (cookies : Cookies.t)
2 (headers : list Header.t)
3 : Run.t (Main.server Path.Index cookies).
4 simpl.
7 apply (RunCall (ListPosts _) (Some headers)).

40/46

Example

The next subgoal is:

1 subgoals
cookies : Cookies.t
headers : list Header.t
______________________________________(1/1)
Run.t (C.Ret (Response.Index (Cookies.is_logged cookies) headers))

Since we are on a Ret expression, the evaluation is terminated and we can
conclude by stating the expected result: we require the response to be the
index page and to include the list of headers.

41/46

Example

1 Definition index_ok (cookies : Cookies.t)
2 (headers : list Header.t)
3 : Run.t (Main.server Path.Index cookies).
4 simpl.
5 apply (RunCall (ListPosts _) (Some headers)).
6 apply (RunRet (Response.Index
7 (Cookies.is_logged cookies)
8 headers)).
9 Defined.

42/46

Conclusion and future work

43/46

Ideas to take home

I Interactive programs can be developed, specified and certified within Coq.
I Scenarios, i.e. symbolic use-cases, can be built interactively.
I Type-checking ensures that programs interact well.

44/46

Future work

Research agenda

I A theory of use-cases to mechanically prove that:
I a use-case refines or extends another use-case ;
I a set of use-cases covers all the behaviors of a program.

I A temporal logic in CiC and related proof system on computations.
I Concurrency primitives and a model-checker.
I Confront this technique with larger software developments.

More about this project. . .

I https://github.com/clarus/io
I http://coq-blog.clarus.me/

45/46

https://github.com/clarus/io
http://coq-blog.clarus.me/

Thank you for your attention!
Any question?

46/46

