
Syntax-driven Program Verification of
Matching Logic Properties

Domenico Bianculli, Antonio Filieri, Carlo Ghezzi, Dino
Mandrioli, Alessandro M. Rizzi

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

Long term goal

Develop a
general

approach for
incremental verification

Goal

▶ show that our general syntax-based framework (SiDECAR)
leads to efficient verification

▶ comparable with the state of the art for particular applications

▶ does not incur in performance penalties even in the non
incremental case

In this work. . .

▶ application of our general syntax-driven framework
(SiDECAR) to program verification based on matching logic

▶ considering the particular case of C-like programs (including
recursion, loops, and rich heap specifications)

▶ kernelC

▶ no penalization of our approach w.r.t. traditional
implementation

Outline

▶ brief overview of matching logic

▶ syntax-based approach of matching logic verification

▶ preliminary evaluation

Matching logic
software

verification

Matching logic

▶ Hoare-like, language independent, semantic abstraction

▶ developed by G. Roşu’s team

▶ describes sets of program states through special many-sorted
first-order logic with equality formulae called configuration
patterns

▶ special term for representing a program configuration

Configuration pattern

▶ represents a set of configurations

▶ is a matching logic formula

▶ configuration with logic variables

∃a,ρ((□︸︷︷︸
current configuration

= ⟨⟨x=2;⟩k ⟨x 7→ a,ρ⟩env ⟩cfg︸ ︷︷ ︸
configuration term

)∧a ≥ 0)

x=2;

k

x 7→ a

env

∧ a ≥ 0

Reachability rules

▶ state trasitions are represented through reachability rules

▶ each reachability rule is composed of two patterns

▶ matching logic defines a set of inference rules which allows
program reachability checking

n=n-1;

•

k

n 7→ i

i − 1

env

∧ i > 0

Syntax-based
representation

of
matching logic

verification

Synthesized-only attribute grammars

▶ attribute grammars (AG) are a formalism for attach meaning
to syntax trees

▶ in synthesized-only AGs, attributes of a given node only
depends on its children

Attribute description

▶ reachability rules are derived from a general template inside
the syntactical structure of the program

▶ instantiation of particular rules based on the current code of
the program

▶ check performed through explicit generation of program
configurations

▶ we need to maintain this information along the syntax-tree:

▶ the code C (sequence of tokens plus symbolic integers)

▶ the available reachability rules R (set of reachability rules)

▶ the state of every verification task Vt (a set of verification
tasks)

Running example

1 int neg(int n){
2 return −n;
3 }
4
5 int sum_iterative(int n)
6 //@pre: n>=0
7 //@post: return = −n∗(n+1)/2
8 {
9 int s;

10 s = 0;
11 //@inv s = −(old(n)−n) ∗ (old(n)+n+1) / 2 /\ n>=0
12 while (n > 0) {
13 s += neg(n);
14 n −= 1;
15 }
16 return s;
17 }

Rule generation
▶ we want generate rules of ⟨exp⟩73

1 int neg(int n){
2 return −n;
3 }
4
5 int sum_iterative(int n)
6 //@pre: n>=0
7 //@post: return = −n∗(n+1)/2
8 {
9 int s;

10 s = 0;
11 //@inv s = −(old(n)−n) ∗ (old(n)+n+1) / 2 /\ n>=0
12 while (n > 0) {
13 s += neg(n);
14 n −= 1;
15 }
16 return s;
17 }

〈compound_stm〉79

〈stm〉78

SEP46〈exp〉77

〈postfix_exp〉76

Constant45

SUB_ASSIGN44〈id〉75

SEP42〈exp〉73

〈postfix_exp〉72

. . .

ADD_ASSIGN37〈id〉69

Rule generation
▶ in each node attribute R maintains the set of available rules
▶ rules instantiated on the actual code from general template
▶ since the code is needed for producing each rule, another

attribute maintains the sequence of code tokens
▶ R73 = {SUM,N}
▶ C73 = {s += neg(n);}

13 s += neg(n);

SUM s += b

c

k

s 7→ a

c

env

∧ c = a + b

N n

a

k

n 7→ a

env

Rule propagation
▶ we have to propagate the rules on ⟨compound_stm⟩79

▶ R79 = R73∪R78 = {SUM,N}∪R78

▶ we have also to compute the code of the node
▶ C79 = C73C78 = {s += neg(n); n -= 1;}

13 s += neg(n);
14 n −= 1;

Software verification

▶ split into different units, e.g., annotated loops or functions

▶ each unit forms a verification task

▶ if every verification task is successfully checked the program
follows its specifications

▶ each verification task can succeed, fail or be unknown

Example

▶ an annotated loop defines a new verification task Vt

▶ such Vt checks the correctness of the loop

10 //@inv s = −(old(n)−n) ∗ (old(n)+n+1) / 2 /\ n>=0
11 while (n > 0) {
12 s += neg(n);
13 n −= 1;
14 }
15 return s;

〈compound_stm〉82

〈stm〉81

SEP50〈id〉80RETURN48

〈compound_stm〉79〈relat_exp〉68

〈post f ix_exp〉67

Constant33

GT32〈id〉66

WHILE29Annotation28

Checking a verification task

▶ each verification task define one (or more) starting
configuration pattern

▶ it defines also the final pattern which must be reached

▶ it is checked by applying all possible rule to the starting
pattern

START if(n>0){...}

k

n 7→ x s 7→ y

env

∧ x ≥ 0 ∧ y = −(z − x) ∗ (z + x + 1)/2

STOP •

k

n 7→ x ′ s 7→ y′

env

∧ x ′ ≥ 0 ∧ y′ = −(z − x ′) ∗ (z + x ′ + 1)/2

Syntax-based verification task evaluation

▶ the evaluation can be performed during the semantic
evaluation

▶ not all the relevant rules may be available at a certain point

▶ in such case the evaluation is suspended to be resumed
afterwards

▶ e.g., function call neg is not available inside the loop

SUSPEND s+=neg(x); n-=1;

k

n 7→ x s 7→ y

env

∧ x ≥ 0 ∧ y = −(z − x) ∗ (z + x + 1)/2

Verification task state must be saved

▶ a triplet vt = ⟨Cr ,Rv ,Ct⟩ maintains the state of a verification
task

▶ Cr is the set containing the frontier of reached configuration
patterns

▶ Rv are the rule available for this task

▶ Ct is the set of configuration patterns representing the
postcondition

▶ e.g., Vt82 = ⟨SUSPEND,R82,STOP⟩

▶ in every node, attribute V contains the set of the current
verification tasks

Verification task propagation
▶ each uncompleted verification task is propagated towards the

root of the tree

▶ if new rule are available, they are use to further process it

▶ e.g., V83 = V65∪V82

Function definition

▶ a verification task is initialized also for annotated functions

▶ reachability rules which contains the behavior of the function
from the specifications are provided

Resuming a verification task

▶ when the missing rules are available the verification task can
continue

▶ the while verification can proceed until no further steps can
follow (e.g., FINAL)

▶ what next?

FINAL •

k

n 7→ x ′′ s 7→ y′′

env

∧ y = −(z − x) ∗ (z + x + 1)/2 ∧ x > 0 ∧ x ′′ = x − 1 ∧ y′′ = y − x

STOP •

k

n 7→ x ′ s 7→ y′

env

∧ x ′ ≥ 0 ∧ y′ = −(z − x ′) ∗ (z + x ′ + 1)/2

Reachability checking
▶ imagine to have reached the final pattern φ which defines the

set of states A

▶ postcondition pattern φ ′ defines the set of states B

▶ we want to check A⊆ B

▶ SMT solver for checking formula implications

B

A

Intrinsically compositional approach
▶ decoupling different portions of the code

▶ incrementality
▶ parallel evaluation

▶ however some non-local information (e.g. function call) may
not be available at a certain point

Preliminary
evaluation

Comparison on MatchC benchmarks

Program MatchC SiDECAR

DivisionByZero 557 23
UninitVariable 548 9
UnalLocation 504 18
UninitMemory 540 79
Average 439 18
Minimum 439 65
Maximum 445 81
MultiByAddition 519 58
SumRecursive 468 81
SumIterative 518 61
CommAssoc 432 43
Head 443 64
Tail 452 36
Add 488 91
Swap 481 75

Program MatchC SiDECAR

Deallocate 492 51
LengthRecursive 508 54
LengthIterative 504 92
SumRecursive 471 91
SumIterative 521 53
Reverse 513 56
Append 547 217
Copy 597 394
Filter 687 566
Insert 750 730
InsertionSort 802 764
BubbleSort 757 898
QuickSort 2,442 524
MergeSort 2,004 1,667

Results in milliseconds

. . . with few exceptions

Program MatchC SiDECAR

DivisionByZero 557 23
UninitVariable 548 9
UnalLocation 504 18
UninitMemory 540 79
Average 439 18
Minimum 439 65
Maximum 445 81
MultiByAddition 519 58
SumRecursive 468 81
SumIterative 518 61
CommAssoc 432 43
Head 443 64
Tail 452 36
Add 488 91
Swap 481 75

Program MatchC SiDECAR

Deallocate 492 51
LengthRecursive 508 54
LengthIterative 504 92
SumRecursive 471 91
SumIterative 521 53
Reverse 513 56
Append 547 217
Copy 597 394
Filter 687 566
Insert 750 730
InsertionSort 802 764
BubbleSort 757 898
QuickSort 2,442 524
MergeSort 2,004 1,667

Results in milliseconds

Comparison on recursion: Fibonacci

N MatchC SiDECAR
1 461 73
2 476 75
3 506 126
4 535 167
5 575 249
6 707 346
7 880 499
8 1,327 711
9 1,678 852

N MatchC SiDECAR
10 3,237 1,174
11 4,325 1,665
12 9,690 2,344
13 13,127 3,141
14 31,641 4,412
15 42,621 6,003
16 107,802 9,351
17 146,594 13,855
18 OutOfMemory OutOfMemory

Results in milliseconds

Comparison on list unrolling through loop

Length MatchC SiDECAR
2 487 102
4 530 138
8 1,323 295
16 OutOfMemory 675
32 OutOfMemory 2,960
64 OutOfMemory 23,017
128 OutOfMemory 295,477

Results in milliseconds

Comparison on list sorting

Length MatchC SiDECAR
1 499 113
2 512 250
3 694 751
4 2,030 3,944
5 34,200 27,310
6 1,024,254 220,875

Results in milliseconds

Conclusions

▶ our general syntax-based framework (SiDECAR) can be
applied to the particular case of matching logic software
verification

▶ for the particular case of software verification with respect of
matching logic formalism

▶ for KernelC programming language

▶ no performance issues w.r.t. current solutions

Future work

▶ develop a generalized framework for incremental software
verification

▶ extend our framework (SiDECAR) to other incremental
applications

▶ extend to other kinds of verification

Thank you for your attention!

Incrementality

▶ our long term objective is incremental verification
▶ verification technique which efficiently handle re-verification of

a new software version
▶ in this first step we provide an encoding of software

verification through matching logic using a syntax-driven
approach

▶ we aim at apply our incremental techniques on top of it

Incremental results over Siemens TCAS bechmark

v21v20v19v18v17v16v15v14v13v12v11v10v9v8v7v6v5v4v3v2v1
0

1

2

3

4

5
·104

m
s

Non incremental

Incremental

Incremental results over Siemens TCAS bechmark

avgv41v40v39v38v37v36v35v34v33v32v31v30v29v28v27v26v25v24v23v22
0

1

2

3

4

5
·104

m
s

Non incremental

Incremental

Verification task evaluation algorithm

1: function Eval(vt = ⟨CR ,Rv ,Ct ⟩)
2: repeat
3: for ci ∈ Cr do
4: Changed ← false
5: temp← /0
6: for ri ∈ Rv do
7: if Matches(ci , ri) then
8:

c ′← ApplyRule(ci , ri)
9: if isSat(c ′) then

10:
temp← temp∪c ′

11: end if
12: end if
13: end for
14: if temp ̸= /0 then
15: Changed ← true
16: Cr ← Cr ∪ temp∖{ci}
17: end if
18: end for

19: until ¬Changed
20: for ci ∈ Cr do
21: if ¬IsFinal(ci) then
22: return false
23: end if
24: end for
25: for ci ∈ Cr do
26: Satisfied ← false
27: for ct ∈ Ct do
28: if satisfy(ci ,ct) then
29: Satisfied ← true
30: end if
31: end for
32: if ¬Satisfied then
33: return false
34: end if
35: end for
36: return true
37: end function

Overall attribute evaluation algorithm

1: function CompAttribute(a1, ...an)
2: K ← a1.K ...an.K
3: Rtemp ← gen(K)
4: R ←

∪n
i=1 ai .R ∪Rtemp

5: Vtemp ←
∪n

i=1 ai .V
6: if hasContract() then
7: Vtemp ← Vtemp ∪genVT (R)
8: end if
9: V ← /0

10: for vi ∈ Vtemp do
11: v ′i ← vi
12: v ′i .Rv ← v ′i .Rv ∪Rtemp
13: eval(v ′i)
14: V ← V ∪v ′i

15: end for
16: a0← (K ,R,V)
17: if isRootNode() then
18: for vi ∈ Vtemp do
19: if eval((vi) ̸= true then
20: return (a0, false)
21: end if
22: end for
23: return (a0,true)
24: else
25: return (a0,delay)
26: end if
27: end function

Back to the example

▶ from FINAL we have:

y =−(z−x)∗ (z + x +1)/2∧x > 0∧x ′′ = x −1∧y ′′ = y −x
(1)

▶ from STOP we have:

x ′ ≥ 0∧y ′ =−(z− x ′)∗ (z + x ′+1)/2 (2)

▶ the additional constraints are the matching of n and s:

x ′ = x ′′∧y ′ = y ′′ (3)

▶ ψ = (1)∧ (3) and ψ ′ = (2)

