

For mal Ver if ication of the Security for Dual Connectivity in LTE

Noamen Ben Henda, Karl Norrman, Katharina Pfeffer Ericsson Research Security, Sweden

outline

=

- Motivation
- Formal Verification of Security Protocols
- Dual Connectivity (DC)
- > DC Modeling
- Results and Conclusion

outline

Motivation

- Formal Verification of Security Protocols
- Dual Connectivity (DC)
- > DC Modeling
- Results and Conclusion

motivation

 Massively deployed Telecom protocols, design errors after deployment are difficult and expensive to correct

- > Active research in academia
- > Usage in standardization still limited

AIM of our work

Evaluate applicability of formal verification tools for standardization of security protocols

- -Expressiveness
- -Usability
- -Performance
- Verify security of one selected feature
 Dual Connectivity (DC)
- Formal verification of DC with three state-of-the-art academic tools:
 Scyther, Tamarin, ProVerif

outline

Motivation

Formal Verification of Security Protocols

- Dual Connectivity (DC)
- > DC Modeling
- Results and Conclusion

For mal verification of Security protocols

=

Security protocols:

- -procedures based on message exchange between agents
- -let agents share secrets over a public network
- -intended to perform correctly even in the presence of a malicious intruder (attacker)

-rely heavily on cryptographic primitives

Attacker model

> In the Symbolic Dolev-Yao Model the attacker

- -has full control over communication medium
 - > ability to intercept all messages, forward, drop or replay old messages
- -cannot decrypt messages unless in possession of required keys

Security properties

> Key establishment security properties:

-Agreement (involved agents obtain same parameter/s, e.g. key)

- -Secrecy (no other than the involved agents obtains key)
- -Freshness (prevents key re-use)
- Aim: Proof that security properties hold for unbounded number of agents and protocol runs

outline

- Motivation
- Formal Verification of Security Protocols
- > Dual Connectivity (DC)
- > DC Modeling
- Results and Conclusion

Dual Connectivity initial offload

outline

- Motivation
- Formal Verification of Security Protocols
- Dual Connectivity (DC)
- > DC Modeling
- Results and Conclusion

DC model in g

> Used automatic model checking tools: Scyther, Tamarin, ProVerif

Different input languages and abstraction levels

Goal:

- -verify **secrecy** and **freshness** of KUPenc
- verify agreement on KUPenc and algorithm between terminal and SeNB

scyther

outline

- Motivation
- Formal Verification of Security Protocols
- Dual Connectivity (DC)
- > DC Modeling
- Results and Conclusion

Results and tool evaluation

> Scyther showed several restrictions while trying to model DC.

- -No support for modeling
 - sets/lists
 - > control flows (loops, conditionals)
 - > secure channels
 - > choice

> Tamarin supports modeling of sets, control flows and choice

-No support for secure channels

> ProVerif supports modeling of sets, choice and secure channels

-No support for control flows (i.e. counters)

Results and tool evaluation

ΤοοΙ	Scyther	Tamarin	ProVerif
Secrecy	+	+	++
Freshness	+	+	-
Agreement	-	-	++

ΤοοΙ	Scyther	Tamarin	ProVerif
Usability	++	+	+
Expressiveness	-	++	-
Performance	+	-	++

conclusion

- Our initial goal was unbounded verification of the security properties secrecy, agreement, and key freshness.
- None of the tools could verify freshness in the unbounded model
 either modeling of required features was not supported or the tool did not terminate
- None of the tools alone provides full support for all the required features – combination possible, but not enough

Applicability during standar dization

> Modeling low level details and state changes during runs is often not supported.

> Process of formal modeling can enrich standardization process.

-Reflect on design choices

Ę

-Formulate security goals

ERICSSON