
VDMPad: a Lightweight IDE for
Exploratory VDM-SL Specification

Tomohiro Oda Software Research Associates, Inc.
Keijiro Araki Kyushu University
Peter G. Larsen Aarhus University

This work is supported by Grant-in-Aid for Scientific Research (S) 24220001

Agenda
1.  Exploratory specification
2.  VDMPad
3.  LIVE tastes of VDMPad
4.  Lightweight IDE for lightweight modeling
5.  Conclusion

Exploratory Specification

exploratory specification
pre-formal phase

informal requirements

formal specification

 which FM tools support

exploratory specification
the first step into formal spec

informal requirements

formal specification

 which FM tools support

struggle to produce
an initial draft of formal spec

exploratory specification
Cycle of exploration

informal requirements

write a specification
 by understanding the domain

understand a domain

 by writing the specification

rigorous formal specification

 which FM tools effectively support

informal requirements
 exploratory formal specification

write a specification

 by understanding the domain

understand a domain
 by writing the specification

formal specification

 which FM tools effectively support

exploratory specification

exploratory specification
Challenges

write a specification
 by understanding the domain

understand a domain

 by writing the specification

Repeat trial and error

various abstraction of the domain
various constructs of the language

The problem definition is not clear.
Because we ARE defining it.
We learn the nature of the problem

 from the spec you will write.

VDMPad

VDMPad

A lightweight VDM-SL IDE for

●  exploratory formal specification
●  introductory education of VDM-SL

with LIVE tastes

VDM-SL
Quick overview of VDM-SL

●  types
o  nat, real, char, seq, set, map, composite, token, ...

●  values
o  constant values

●  functions
o  pure (total / partial) functions
o  expressions (if-then-else, lambda, ...)

●  states
o  variables

●  operations
o  statements (assignments, while, ...)

VDM-SL
example: fibonacci numbers

LIVE tastes

LIVE tastes of VDMPad

●  state manipulation
●  workspace
●  animation over modifications
●  visual presentation
●  continuous unit testing
●  permissive checking

LIVE tastes
state manipulation

●  The user can directly edit the state of the
animated system.

o  to check if the given state satisfies invariants

o  to animate behavior of the system in the given

hypothetical state
§  not always be realized by a series of operations
§  easy to reproduce the state of the concern.

LIVE tastes
state manipulation

LIVE tastes
state manipulation

module name

variable name

visual presentation

values

initialize button

LIVE tastes
workspace

●  workspace is a free text editor

o  to list and evaluate

§  a series of operations in a scenario.
§  a set of basic operations to drive the animated

system in exploratory ways.

o  to leave memos in natural languages.

LIVE tastes
workspace

LIVE tastes
workspace

memo

VDM-SL expression

selected expression

evaluate button

More freedom than
REPL (Read-Eval-Print Loop) console!

LIVE tastes
animation over modifications

●  Keep the state of the animated system when
modifying the spec.

o  to continue the on-going scenerio after fixing a minor

bug.

o  for immersive modeling.

LIVE tastes
animation over modifications

LIVE tastes
visual presentation

LIVE tastes
visual presentation

LIVE tastes
continuous unit testing

●  always run unit tests after evaluation

o  as a discipline in trial and error process

o  to detect degrading by trial and error

LIVE tastes
continuous unit testing

LIVE tastes
continuous unit testing

LIVE tastes
permissive checking

●  can optionally disable runtime checking

o  to simulate "bad" scenario

o  to focus on more important issue

not for regular use!

Lightweight

Lightweight IDE

VDMPad is lightweight in the senses of
●  no installation, less footprints, quick launch
●  less setup to start with a new model
●  simple user interfaces
●  small and focused functionality

Lightweight IDE
no installation, less footprints, quick launch

●  Web-based IDE
o  a free server available online.
o  open http://vdmpad.csce.kyushu-u.ac.jp/

and then you have the IDE before your eyes.

●  runs on Firefox browser and Google Chrome

Lightweight IDE
less setup to start with a new model

●  no need for user registration
o  Nothing is stored on the server.

●  no need for source trees
o  Everything is stored in your browser.

●  spec and animation contexts are
automatically saved into your browser

All you need to write a spec is on the browser's
localStorage (HTML5's standard key-value DB)

Lightweight IDE
simple user interface

Lightweight IDE
small and focused functionality

●  The "evaluate" button is the only operation to
invoke functionality.
o  edit a specification
o  change the state
o  eval an expression

●  menu to manage stored animations and
options
o  animations: load, save, delete, export
o  options: 5 checkboxes

Conclusion

Conclusion

●  exploratory specification
o  trial and error

to obtain the first grip on the right abstraction
●  LIVE tastes

o  more freedom to try
o  immersive modeling
o  discipline by continuous unit testing
o  occasionally permissive

●  lightweight IDE
o  good for introductory education
o  always ready to go

Thank you.

