
Connie Heitmeyer
Beth Leonard

Software Engineering Section
Center for High Assurance Computer Systems

Naval Research Laboratory
Washington, DC

FormaliSE: FME Workshop on
Formal Methods in Software Engineering

Florence, Italy
May 18, 2015

OBTAINING TRUST IN AUTONOMOUS VEHICLES:
TOOLS FOR FORMAL MODEL SYNTHESIS

AND VALIDATION

2
5/22/2015

OUTLINE

• Background
- Formal methods: Shown to have utility in practice
- Why software problem even harder now: Cyber Physical Systems
- Two kinds of trust needed in developing Unmanned/Autonomous

Vehicles, a special class of CPSs
• Transitioning FMs to software practice

- Challenge 1: How to obtain the formal system model
 Formal model synthesis from scenarios

- Challenge 2: How to model/analze CPSs
 3D simulation based on a formal req. model

• Scenario-Based Formal Model Synthesis
• Formal Model-Based 3D Simulation
• Conclusions and Future Work

3

BACKGROUND

4
5/22/2015

UTILITY OF FORMAL METHODS IN
REAL-WORLD SOFTWARE HAS BEEN SHOWN

Software-Based Crypto Device
• FMs used in certification of security
• EAL6+ Common Criteria evaluation
• Formal security model, formal verif.,

demo that C code satisfies formal model

Help verify
model &

code
Lockheed Martin
• Since 1999, SCR tools used by 3 sites
• “We currently are supporting close to 1500

models…and have found SCR Tool suite to
be…invaluable…in finding requirements
defects, as well as validating the functional
behaviour of our software requirements.”

Tools used
in industry

Weapons Control Panel
• Large complex program (~30KLOC)
• Contractor software req. spec: 250+ vars
• Translated into a formal model in 2 wks.
• Model checking showed that all six safety

properties violated!

International Space Station
• Failure Detection, Isolation & Recovery in

Thermal Radiator Rotary software module
• Translating semiformal req. documents into

a formal spec exposed two serious errors!

Detect
errors

Presentator
Presentatienotities
WCPNASA AppPEIPLockheed Martin quote

5
5/22/2015

DEVELOPING CORRECT SOFTWARE IS
BECOMING EVEN MORE CHALLENGING

• Prior focus of FMs: Embedded Systems
- An embedded system is immersed in a physical system that it

monitors and controls
- Focus in development is on the embedded system only

• New Challenge for FMs: Cyber Physical Systems
- A cyber physical system combines a digital system performing

computation with physical processes
- Problem: Managing the dynamics, timing and concurrency in both the

digital system and physical processes
• Imp. Class of CPSs: (Intelligent) Unmanned/Autonomous Systems

Adapted from A. Sangiovanni-Vincentelli, “Let’s Get Physical: Adding Physical
Dimensions to Cyber Systems,” Internat. Conf. on Cyber Physical Systems, 2014.

6
5/22/2015

Problem for Unmanned Systems:
Human Mistrust of Automation/Autonomy

6

 Two kinds of trust needed*
– System Trust: Human confidence that system behaves as intended
– Operational Trust: Human confidence that system helps him/her

perform the assigned tasks
 To achieve system trust

– Need high assurance that system satisfies its requirements
 formal modeling, formal verification

 To achieve operational trust
– Need well-designed HCI and human validation that the designed

autonomy will help
 formal modeling, model-based simulation

*Dan Zwillinger, Ratheon, S5, 2014.

7
5/22/2015

A SOLID BASIS FOR OBTAINING SYSTEM &
OPERATIONAL TRUST: A FORMAL MODEL

BENEFITS OF A FORMAL SYSTEM MODEL
 Can be verified to satisfy the required system properties
 system trust

 Can be validated to show that it captures the intended behavior
 operational trust

PROBLEM IN CURRENT SOFTWARE PRACTICE
 Formal system/requirements models are rare

– Practitioners regard formal notations as difficult to understand and
apply; don’t think that formal models scale, are cost-effective*

 When they do exist, formal models are often
– Ambiguous: Rep’d in languages w/o a formal semantics
– Expressed at a low level of abstraction

OBTAINING A FORMAL MODEL: A PROMISING APPROACH
 Synthesize a formal model from scenarios

*C. Heitmeyer, “On the need for practical formal methods,” FTRTFT, 1998.

8

SCENARIO-BASED
FORMAL MODEL

SYNTHESIS

9
5/22/2015

Already significant research on this problem
 Most research based on Message Sequence Charts (MSCs)

– Many practitioners use MSCs to specify requirements
– Natural therefore to develop methods which synthesize formal

models from MSCs
 Why Introduce Yet Another Method?

– The SCR notation scales, is expressive and understandable by
practitioners

– SCR tools have already been used successfully 1) to detect errors in
and 2) to verify both models and source code

– While developers have difficulty creating tabular specs, they can
readily extend & modify models expressed as tables

– A model generated from scenarios is inherently incomplete; the SCR
CC automatically finds incompleteness in a model

– SCR makes available a wide range of tools for formal model analysis
and validation, test generation, code generation, etc.

Formal Model Synthesis
from Scenarios

10
5/22/2015

A Moded Scenarios Description (MSD) has three components
 A set of Event Sequence Charts (ESCs)

– Inspired by MSCs
– Look like MSCs

 A Mode Diagram
 A Scenario Constraint

– Defines initial variable values
– Specifies assumptions and properties (e.g., safety and security)
– Defines constants, and state invariants

Our New Scenario Language:
A Moded Scenarios Description

Numeric Labels
link the Mode
Diagram with

the ESCs

Ref. [1] presents our new scenario language, a
mathematical model that defines its semantics, and two
algorithms for generating definitions of the dependent

variables from elements of the MSD

1C. Heitmeyer et al., “Building Human-Centric Decision Systems,” ASE, 2015.

11
5/22/2015

Formal Model Synthesis from a MSD:
Event Sequence Chart

12
5/22/2015

Formal Model Synthesis from a
Moded Scenarios Description

Scenarios specified as ESCs

Mode Diagram

Scenario Constraint

manual
automatic

FORMAL
MODEL

13
5/22/2015

F(c1): M x E -> TY(c1)

Scenarios

Requirements
Engineer

(μ1, μ2)
(μ1, μ3)

…
(μn-1, μn)

Modes Mode
Transitions

m1
m2
…
mk

t(m1)
t(m2)

…
t(mk)

c1
c2
…
cl

t(c1)
t(c2)
…

t(cl)
Monitored

Vars &
Their
Types

Controlled
Vars &
Their
Types

e1
e2
…
eu

Events
triggering

mode
transitions

Fx: M x E -> M
Function
defining
mode

transitions

F(c1): M x E -> TY(c1)

Functions defining
controlled
variable
valuesF(c1): M x E -> TY(c1)

1

3 4
5

6

Manual

f1
f2
…
fv

Events
triggering
changes in
controlled
variables

μ1
μ2
…
μn

Formal System Model Synthesis:
Method

14
5/22/2015

F(c1): M x E -> TY(c1)

Scenarios

Requirements
Engineer

Synthesized
Formal
Model

(μ1, μ2)
(μ1, μ3)

…
(μn-1, μn)

Modes Mode
Transitions

m1
m2
…
mk

t(m1)
t(m2)

…
t(mk)

c1
c2
…
cl

t(c1)
t(c2)
…

t(cl)
Monitored

Vars &
Their
Types

Controlled
Vars &
Their
Types

e1
e2
…
eu

Events
triggering

mode
transitions

Fμ: M x E -> M
Function
defining
mode

transitions

F(c1): M x E -> TY(c1)

Functions defining
controlled
variable
valuesF(c1): M x E -> TY(c1)

1

3 4
5

6

Consistency
Checker

Check
Well-formedness

of Model

Detect violations
of completeness,
disjointness,...

8

Manual
Totally

Automated

μ1
μ2
…
μn

μ1
μ2
…
μn

f1
f2
…
fv

Events
triggering
changes in
controlled
variables

Formal System Model Synthesis:
Method

15
5/22/2015

• If two UAVs are on
a collision course,
the system notifies
the operator within
.5 s.

• If a UAV has no
assigned target, the
system notifies the
operator within 1 s.

• …

F(c1): M x E -> TY(c1)

Scenarios

Requirements
Engineer

Synthesized
Formal
Model

(μ1, μ2)
(μ1, μ3)

…
(μn-1, μn)

Modes Mode
Transitions

m1
m2
…
mk

t(m1)
t(m2)

…
t(mk)

c1
c2
…
cl

t(c1)
t(c2)
…

t(cl)
Monitored

Vars &
Their
Types

Controlled
Vars &
Their
Types

e1
e2
…
eu

Events
triggering

mode
transitions

Fμ: M x E -> M
Function
defining
mode

transitions

F(c1): M x E -> TY(c1)

Functions defining
controlled
variable
valuesF(c1): M x E -> TY(c1)

1

3 4
5

6

Check
safety

properties

Property
is/is not

valid

9

Manual
Totally

Automated

μ1
μ2
…
μn

μ1
μ2
…
μn

f1
f2
…
fv

Events
triggering
changes in
controlled
variables

Formal System Model Synthesis:
Method

16
5/22/2015

F(c1): M x E -> TY(c1)

Scenarios

Requirements
Engineer

Synthesized
Formal
Model

(μ1, μ2)
(μ1, μ3)

…
(μn-1, μn)

Modes Mode
Transitions

m1
m2
…
mk

t(m1)
t(m2)

…
t(mk)

c1
c2
…
cl

t(c1)
t(c2)
…

t(cl)
Monitored

Vars &
Their
Types

Controlled
Vars &
Their
Types

e1
e2
…
eu

Events
triggering

mode
transitions

Fμ: M x E -> M
Function
defining
mode

transitions

F(c1): M x E -> TY(c1)

Functions defining
controlled
variable
valuesF(c1): M x E -> TY(c1)

1

3 4
5

6

Validate
Model &

Assumptions

Assumption
is/is not

valid

9

Manual
Totally

Automated

μ1
μ2
…
μn

μ1
μ2
…
μn

f1
f2
…
fv

Events
triggering
changes in
controlled
variables

Synthesized Formal Model:
Provides Basis for Validation

Our Tool’s Representation of a
Moded Scenario Description

Template
defining

initial values
of variables

Template
containing
a single

assertion Mode Diagram
ESC 3

ESC 1
ESC 2

The Formal Model
Synthesized from the MSD

Type Dictionary

Mode Class Dictionary

Variable Dictionary

Mode
Trans.
Table

Event
Table
Defining a
Controlled
Variable

Assertion Dictionary

List of
Models

List of
all

Model
Compo-
nents

19

3-D Simulator

Simulators Based on a
Formal Model

Many just have textual displays A few (e.g., SCR, Statemate)
allow creation of custom 2D GUIs

No 3D, discrete computation only, no continuous movement

Logs each state change and notifies user when
violations of assumptions or specified properties occur

Simple features such as
buttons, switches, and dials

Limitations

Two Types of Simulators:
Formal Model Based vs Application-Specific

21

Approach: Integrate a formal model based simulator with an
application-specific simulator
Process

1. Choose an appropriate application/domain simulator: Represents
system’s physical aspects and its operational environment

2. Use two simulators: E.g.,
 a customized formal model based simulator as the system controller and
 the application-specific simulator to represent the dynamic behavior of

the system environment
3. Integrate the two simulators: Allows communications between the

two at appropriate points during execution
Benefits of Integration
 From application-specific simulator: more realistic simulation
 From formal model tools (including simulator): formal foundation that

allows notification of property violations during simulation

eBotworks*: An Application-Specific Simulator
for UGVs (Unmanned Ground Vehicles)

22

 Simulator and testbed for autonomy software for
command and control of unmanned systems

 Built to support locomotion and path planning
 Wheeled UGV is the choice of vehicle we selected
 Using eBotworks, we built a simulated world containing

landmarks (e.g., roads) and objects (e.g., packages,
vehicles)

*http://www.knexusresearch.com/products/ebotworks.php

Integrating eBotworks
with the SCR Simulator

 User inputs (e.g., commands to perform a task and changes in trust
measure) given via SCR simulator and passed to eBotworks

 eBotworks performs actions associated with commands, sending
information about vehicle status and location back to SCR

 Integration via shared files

System Controller: Customized GUI
Front-End for the SCR Simulator

eBotworks: Displays system environment,
vehicle location & motion, path planning

Bringing explosive
ordnance home

=
UNWANTED SYSTEM

BEHAVIOR

Task: Explosive Ordnance Disposal (EOD)

Unloading explosive
ordnance before
coming home

=
INTENDED SYSTEM

BEHAVIOR

Validation of UGV Model: Property Checking
During Simulation Exposed an Error

 Benefit of Formal Methods Tools: High Assurance
 Two Important Gaps in Formal Methods Tools

1. Getting an initial model
 Addressed by synthesizing model from scenarios

2. Simulating 3D, motion, continuous behavior
 Addressed by integrating formal methods simulator with

application-specific simulator
 Future Work:

– Improved tool support for specifying scenarios and model
synthesis

– Develop SCR simulator interface to facilitate future
integrations

– Integrate SCR simulator with other application-specific
simulators with more capabilities
 AV2 Ground Vehicle
 Unmanned Cargo Transport Helicopter

SUMMARY AND
FUTURE WORK

 Needed research “ranges from economics, law, and
philosophy to computer security [and] formal methods”

 “As autonomous systems become more prevalent in society,
it becomes increasingly important that they robustly behave
as intended. The development of autonomous vehicles,
…autonomous weapons, etc., has therefore stoked interest in
high-assurance systems where strong robustness guarantees
can be made”

 “…society will reject autonomous agents unless we have
some credible means of making them safe”

 Formal verification and validation are critical…

Role of Formal Methods in Developing
“Intelligent” Autonomous Systems1, 2

1“Research priorities for robust and beneficial artificial intelligence,” Future of Life
Institute, Jan. 2015

2“Benefits and risks of artificial intelligence,” T. G. Dietterich, President, AAAI, Jan. 2015

	Dianummer 1
	OUTLINE
	Dianummer 3
	UTILITY OF FORMAL METHODS IN �REAL-WORLD SOFTWARE HAS BEEN SHOWN
	DEVELOPING CORRECT SOFTWARE IS �BECOMING EVEN MORE CHALLENGING
	Problem for Unmanned Systems: �Human Mistrust of Automation/Autonomy
	Dianummer 7
	Dianummer 8
	Dianummer 9
	Dianummer 10
	Dianummer 11
	Dianummer 12
	Formal System Model Synthesis:�Method
	Formal System Model Synthesis:�Method
	Formal System Model Synthesis:�Method
	Synthesized Formal Model:�Provides Basis for Validation
	Our Tool’s Representation of a �Moded Scenario Description
	The Formal Model�Synthesized from the MSD�
	Dianummer 19
	Simulators Based on a �Formal Model
	Two Types of Simulators:�Formal Model Based vs Application-Specific
	eBotworks*: An Application-Specific Simulator�for UGVs (Unmanned Ground Vehicles)
	Integrating eBotworks �with the SCR Simulator�
	Validation of UGV Model: Property Checking �During Simulation Exposed an Error
	SUMMARY AND�FUTURE WORK
	Role of Formal Methods in Developing�“Intelligent” Autonomous Systems1, 2

