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OUTLINE

• Background
- Formal methods:  Shown to have utility in practice
- Why software problem even harder now:  Cyber Physical Systems
- Two kinds of trust needed in developing Unmanned/Autonomous 

Vehicles, a special class of CPSs
• Transitioning FMs to software practice

- Challenge 1:  How to obtain the formal system model
 Formal model synthesis from scenarios

- Challenge 2:  How to model/analze CPSs
 3D simulation based on a formal req. model

• Scenario-Based Formal Model Synthesis
• Formal Model-Based 3D Simulation
• Conclusions and Future Work
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UTILITY OF FORMAL METHODS IN 
REAL-WORLD SOFTWARE HAS BEEN SHOWN

Software-Based Crypto Device
• FMs used in certification of security
• EAL6+ Common Criteria evaluation
• Formal security model, formal verif., 

demo that C code satisfies formal model

Help verify
model &

code
Lockheed Martin
• Since 1999, SCR tools used by 3 sites
• “We currently are supporting close to 1500 

models…and have found SCR Tool suite to 
be…invaluable…in finding requirements 
defects, as well as validating the functional 
behaviour of our software requirements.”

Tools used
in industry

Weapons Control Panel 
• Large complex program (~30KLOC)
• Contractor software req. spec: 250+ vars
• Translated into a formal model in 2 wks.
• Model checking showed that all six safety 

properties violated!

International Space Station
• Failure Detection, Isolation & Recovery in 

Thermal Radiator Rotary software module
• Translating semiformal req. documents into 

a formal spec exposed two serious errors!

Detect
errors

Presentator
Presentatienotities
WCPNASA AppPEIPLockheed Martin quote
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DEVELOPING CORRECT SOFTWARE IS 
BECOMING EVEN MORE CHALLENGING 

• Prior focus of FMs:  Embedded Systems
- An embedded system is immersed in a physical system that it 

monitors and controls
- Focus in development is on the embedded system only

• New Challenge for FMs:  Cyber Physical Systems
- A cyber physical system combines a digital system performing 

computation with physical processes
- Problem:  Managing the dynamics, timing and concurrency in both the 

digital system and physical processes
• Imp. Class of CPSs: (Intelligent) Unmanned/Autonomous Systems

Adapted from A. Sangiovanni-Vincentelli, “Let’s Get Physical:  Adding Physical 
Dimensions to Cyber Systems,” Internat. Conf. on Cyber Physical Systems, 2014.
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Problem for Unmanned Systems:  
Human Mistrust of Automation/Autonomy
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 Two kinds of trust needed*
– System Trust:  Human confidence that system behaves as intended
– Operational Trust: Human confidence that system helps him/her 

perform the assigned tasks
 To achieve system trust

– Need high assurance that system satisfies its requirements
 formal modeling, formal verification

 To achieve operational trust
– Need well-designed HCI and human validation that the designed 

autonomy will help 
 formal modeling, model-based simulation

*Dan Zwillinger, Ratheon, S5, 2014.
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A SOLID BASIS FOR OBTAINING SYSTEM & 
OPERATIONAL TRUST:  A FORMAL MODEL

BENEFITS OF A FORMAL SYSTEM MODEL
 Can be verified to satisfy the required system properties                   
 system trust

 Can be validated to show that it captures the intended behavior 
 operational trust 

PROBLEM IN CURRENT SOFTWARE PRACTICE
 Formal system/requirements models are rare

– Practitioners regard formal notations as difficult to understand and 
apply; don’t think that formal models scale, are cost-effective*

 When they do exist, formal models are often 
– Ambiguous: Rep’d in languages w/o a formal semantics
– Expressed at a low level of abstraction

OBTAINING A FORMAL MODEL: A PROMISING APPROACH
 Synthesize a formal model from scenarios  

*C. Heitmeyer, “On the need for practical formal methods,” FTRTFT, 1998.
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SCENARIO-BASED 
FORMAL MODEL 

SYNTHESIS
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Already significant research on this problem
 Most research based on Message Sequence Charts (MSCs)

– Many practitioners use MSCs to specify requirements
– Natural therefore to develop methods which synthesize formal 

models from MSCs
 Why Introduce Yet Another Method?

– The SCR notation scales, is expressive and understandable by 
practitioners 

– SCR tools have already been used successfully 1) to detect errors in 
and 2) to verify both models and source code

– While developers have difficulty creating tabular specs, they can 
readily extend & modify models expressed as tables

– A model generated from scenarios is inherently incomplete; the SCR 
CC automatically finds incompleteness in a model

– SCR makes available a wide range of tools for formal model analysis 
and validation, test generation, code generation, etc.

Formal Model Synthesis 
from Scenarios
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A Moded Scenarios Description (MSD) has three components
 A set of Event Sequence Charts (ESCs)

– Inspired by MSCs 
– Look like MSCs

 A Mode Diagram
 A Scenario Constraint

– Defines initial variable values
– Specifies assumptions and properties (e.g., safety and security) 
– Defines constants, and state invariants

Our New Scenario Language:
A Moded Scenarios Description

Numeric Labels 
link the Mode 
Diagram with 

the ESCs

Ref. [1] presents our new scenario language, a 
mathematical model that defines its semantics, and two 
algorithms for generating definitions of the dependent 

variables from elements of the MSD

1C. Heitmeyer et al., “Building Human-Centric Decision Systems,” ASE, 2015.
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Formal Model Synthesis from a MSD:
Event Sequence Chart
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Formal Model Synthesis from a
Moded Scenarios Description

Scenarios specified as ESCs

Mode Diagram

Scenario Constraint

manual
automatic

FORMAL 
MODEL
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• If two UAVs are on 
a collision course, 
the system notifies 
the operator within 
.5 s.

• If a UAV has no 
assigned target, the 
system notifies the 
operator within 1 s.

• …
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Synthesized Formal Model:
Provides Basis for Validation



Our Tool’s Representation of a 
Moded Scenario Description

Template 
defining 

initial values 
of variables

Template 
containing
a single

assertion Mode Diagram
ESC 3

ESC 1
ESC 2



The Formal Model
Synthesized from the MSD

Type Dictionary

Mode Class Dictionary

Variable Dictionary

Mode 
Trans. 
Table

Event 
Table 
Defining a 
Controlled 
Variable

Assertion Dictionary

List of 
Models

List of 
all

Model
Compo-
nents
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3-D Simulator



Simulators Based on a 
Formal Model

Many just have textual displays A few (e.g., SCR, Statemate) 
allow creation of custom 2D GUIs

No 3D, discrete computation only, no continuous movement

Logs each state change and notifies user when 
violations of assumptions or specified properties occur

Simple features such as 
buttons, switches, and dials

Limitations



Two Types of Simulators:
Formal Model Based vs Application-Specific
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Approach: Integrate a formal model based simulator with an 
application-specific simulator
Process

1. Choose an appropriate application/domain simulator: Represents 
system’s physical aspects and its operational environment

2. Use two simulators: E.g., 
 a customized formal model based simulator as the system controller and 
 the application-specific simulator to represent the dynamic behavior of 

the system environment 
3. Integrate the two simulators: Allows  communications between the 

two at appropriate points during execution
Benefits of Integration
 From application-specific simulator: more realistic simulation
 From formal model tools (including simulator): formal foundation that 

allows notification of property violations during simulation



eBotworks*:  An Application-Specific Simulator
for UGVs (Unmanned Ground Vehicles)
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 Simulator and testbed for autonomy software for 
command and control of unmanned systems

 Built to support locomotion and path planning
 Wheeled UGV is the choice of vehicle we selected
 Using eBotworks, we built a simulated world containing 

landmarks (e.g., roads) and objects (e.g., packages, 
vehicles)

*http://www.knexusresearch.com/products/ebotworks.php



Integrating eBotworks
with the SCR Simulator

 User inputs (e.g., commands to perform a task and changes in trust 
measure) given via SCR simulator and passed to eBotworks

 eBotworks performs actions associated with commands, sending 
information about vehicle status and location back to SCR

 Integration via shared files

System Controller: Customized GUI 
Front-End for the SCR Simulator

eBotworks: Displays system environment, 
vehicle location & motion, path planning



Bringing explosive 
ordnance home 

= 
UNWANTED SYSTEM 

BEHAVIOR

Task:  Explosive Ordnance Disposal (EOD)

Unloading explosive 
ordnance before 
coming home 

= 
INTENDED SYSTEM 

BEHAVIOR

Validation of UGV Model: Property Checking 
During Simulation Exposed an Error



 Benefit of Formal Methods Tools: High Assurance 
 Two Important Gaps in Formal Methods Tools

1. Getting an initial model
 Addressed by synthesizing model from scenarios

2. Simulating 3D, motion, continuous behavior
 Addressed by integrating formal methods simulator with 

application-specific simulator
 Future Work: 

– Improved tool support for specifying scenarios and model 
synthesis

– Develop SCR simulator interface to facilitate future 
integrations

– Integrate SCR simulator with other application-specific 
simulators with more capabilities
 AV2 Ground Vehicle
 Unmanned Cargo Transport Helicopter

SUMMARY AND
FUTURE WORK



 Needed research “ranges from economics, law, and 
philosophy to computer security [and] formal methods”

 “As autonomous systems become more prevalent in society, 
it becomes increasingly important that they robustly behave 
as intended. The development of autonomous vehicles, 
…autonomous weapons, etc., has therefore stoked interest in 
high-assurance systems where strong robustness guarantees 
can be made”

 “…society will reject autonomous agents unless we have 
some credible means of making them safe”

 Formal verification and validation are critical…

Role of Formal Methods in Developing
“Intelligent” Autonomous Systems1, 2

1“Research priorities for robust and beneficial artificial intelligence,” Future of Life
Institute, Jan. 2015

2“Benefits and risks of artificial intelligence,” T. G. Dietterich, President, AAAI, Jan. 2015
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