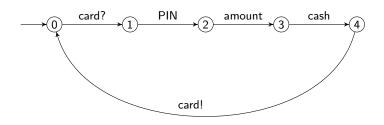
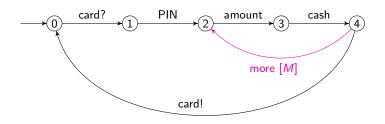
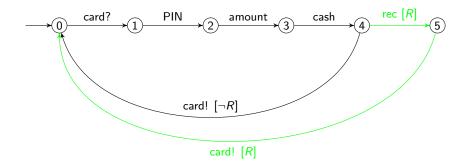

Measuring Behaviour Interactions between Product-Line Features

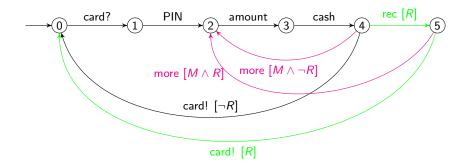
Jo Atlee Uli Fahrenberg Axel Legay


U Waterloo, Canada / Inria Rennes, France

FormaliSE May 2015


Motivation	FTS	Interactions	Computation	Conclusion
Motivatio	n			


Motivation	FTS	Interactions	Computation	Conclusion
Motivatior	1			


Motivation	FTS	Interactions	Computation	Conclusion
Motivatior	1			

Motivation	FTS	Interactions	Computation	Conclusion
Motivation				

Motivation	FTS	Interactions	Computation	Conclusion
Motivatior				

Motivation	FTS	Interactions	Computation	Conclusion

- Peatured Transition Systems
- 3 Behaviour Interactions
- 4 Behaviour Interaction Score
- 5 Computing All Scores at Once

Featured Transition Systems

Definition

A transition system (TS) $S = (S, \Sigma, I, T)$ consists of a set of states S, a set of initial states $I \subseteq S$, a set of actions Σ , and a set of transitions $T \subseteq S \times \Sigma \times S$.

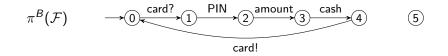
Definition

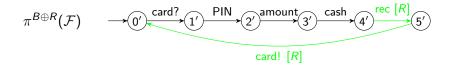
A featured transition system (FTS) $\mathcal{F} = (S, \Sigma, I, T, \gamma)$ consists of a TS (S, Σ, I, T) and a mapping $\gamma : T \to \mathbb{B}(N)$.

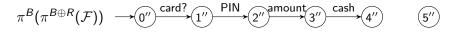
• N: set of features

• (usually comes with a feature diagram, but we'll ignore this)

- any subset $p \subseteq N$: a product
- $\mathbb{B}(N)$: set of feature expressions
 - used to compactly specify sets of products


Motivation	FTS	Interactions	Computation	Conclusion
Behaviou	r Intera	ctions		


Definition (Shaker, Atlee: SPLC 2014)

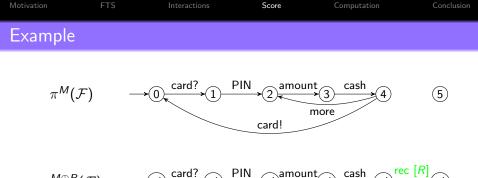

Given an FTS \mathcal{F} , a product $p \subseteq N$, and a feature $f \in N$, we say that f has a behaviour interaction with p if $\pi^p(\mathcal{F})$ and $\pi^p(\pi^{p \oplus f}(\mathcal{F}))$ are not bisimilar.

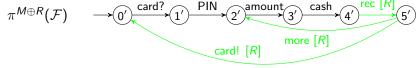
- $\pi^{p}(\mathcal{F})$: projection of \mathcal{F} to product p
 - ${\scriptstyle \bullet}\,$ delete all transitions which are not enabled with p
- similarly for $\pi^{p \oplus f}(\mathcal{F})$: projection to p plus f

Motivation	FTS	Interactions	Computation	Conclusion
Example				

not bisimilar

Motivation FTS Interactions Score Computation Conclusion
Behavioural Distance


Calculate behavioural distance d(S, S') between TS $S = (S, \Sigma, I, T)$ and $S' = (S', \Sigma, I', T')$:


- 1: var $Passed \leftarrow \emptyset$
- 2: **return** $\max_{i \in I} \min_{i' \in I'} dist(i, i')$

Definition

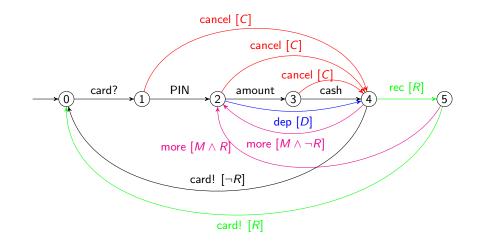
Given an FTS \mathcal{F} , a product $p \subseteq N$, and a feature $f \in N$, the behaviour interaction score of f with p is $d(\pi^p(\mathcal{F}), \pi^p(\pi^{p \oplus f}(\mathcal{F}))).$

3: function dist(s, s')Add (s, s') to Passed 4: 5: var $m \leftarrow \infty$. $d \leftarrow 0$ for all $s \xrightarrow{a} t$ do 6: if $s' \xrightarrow{a}$ then $d \leftarrow d+1$ 7: else 8. for all $s' \xrightarrow{a} t'$ do 9: if $(t, t') \notin Passed$ then 10: 11: $m \leftarrow \min(m, dist(t, t'))$ 12: else $m \leftarrow 0$ 13: $d \leftarrow d + m$ return d 14:

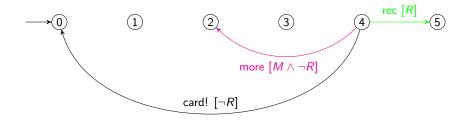
$$\pi^{M}(\pi^{M\oplus R}(\mathcal{F})) \xrightarrow{0} \underbrace{\operatorname{card}^{2}} 1 \xrightarrow{\operatorname{PIN}} 2 \xrightarrow{\operatorname{amount}} 3 \xrightarrow{\operatorname{cash}} 4 \qquad (5)$$

behaviour interaction score: 2

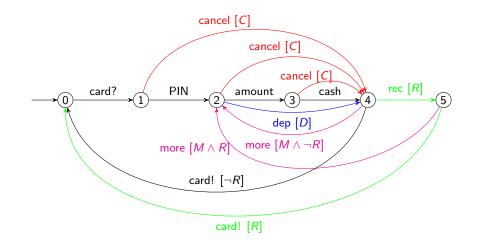
Motivation FTS Interactions Score Computation Conclusion


Computing All Scores at Once

Calculate behaviour interaction score $D_f(\mathcal{F})$ of feature f in FTS $\mathcal{F} = (S, \Sigma, I, T, \gamma)$:


1: var max
$$\leftarrow |T|$$
9: function $fdist(n, s, s', \phi)$ 2: var $D : \{0, \dots, max\} \rightarrow \mathbb{B}(N)$ 10: var $d : \mathbb{B}(N)$ 3: var Passed : $S \times S \rightarrow \mathbb{B}(N)$ 11: Passed(s, s') \leftarrow 4: for $n \leftarrow 0$ to max doPassed(s, s') $\lor \phi$ 5: for all $s, s' \in S$ do12: $d \leftarrow \text{ff}$ 6: Passed(s, s') \leftarrow ff13: for $k \leftarrow 0$ to n do7: $D(n) =$ 14: $d \leftarrow d \lor upd(n, s, s', k)$ $\bigwedge_{i \in I} \bigvee_{i' \in I'} fdist(n, i, i', \text{tt})$ 15: return d

$$upd(n, s, s', k) \leftarrow \bigvee_{\substack{T_1 \subseteq \{s \xrightarrow{a} t\} \\ |\{s \xrightarrow{a} t\} \setminus T_1| = k}} \bigwedge_{\substack{s \xrightarrow{a} t \in T_1 \\ fdist(n-k, t, t', \gamma(s \xrightarrow{a} t) \land \gamma(s' \xrightarrow{a} t'))))} fdist(n-k, t, t', \gamma(s \xrightarrow{a} t) \land \gamma(s' \xrightarrow{a} t')))))$$


Motivation	FTS	Interactions	Computation	Conclusion
Example				

Motivation	FTS	Interactions	Computation	Conclusion
Example				

Motivation	FTS	Interactions	Computation	Conclusion
Example				

b.i.s. 0: $\neg B$ b.i.s. 1: $\neg M$ b.i.s. 2: **tt**

Atlee, Fahrenberg, Legay Measuring Behaviour Interactions between Product-Line Feature

Motivation	FTS	Interactions	Computation	Conclusion
Conclusio	n			

- behaviour interaction score: degree to which features within a software product line interact with each other
 - a type of (bi)simulation distance
- algorithm to compute, in a single run, behaviour interaction scores between a feature *f* and all products
- useful as an indicator of the relative amount of work needed to integrate a feature into the products of a product line

Future work:

- distinguish between intended and unintended behaviour interactions
- implement algorithm
 - also to show where behaviour interactions occur