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Preface

Welcome to the third Doctoral Symposium of the International Symposium on
Formal Methods. This year, the Formal Methods Symposium and its Doctoral
Symposium are organized in Eindhoven, the Netherlands. It is also part of the
Formal Methods Week featuring a number of scientific events dedicated to For-
mal Methods and their application.

The call for papers for the Doctoral Symposium was sent out in July 2009
and has attracted 20 papers from 13 different countries. The review commit-
tee then spent about one month reviewing the submitted papers and discussing
them. The final decision was a particularly difficult one since 14 out of 20 papers
received an average positive score from the reviewers; hence, many good sub-
missions had to be rejected due to the limited time dedicated to the symposium
and to guarantee sufficient room for discussion for the accepted papers. Finally,
the review committee accepted 10 papers from 6 different countries, which are
presented in this proceedings.

We would like to thank several people and organizations which helped us in
organizing this symposium. First and foremost, we would like to acknowledge
the help and support provided by the FM 2009 organization committee and
program co-chairs: Tijn Borghuis, Erik de Vink, Jos Baeten, Ana Cavalcanti
and Dennis Dams. We are grateful to Formal Methods Europe association for
providing generous travel grants and free tickets to the conference dinner for the
participating students. Also, we would like to thank our Review and Examination
Committees, as well as the additional sub-referees for their time and effort in
reviewing and selecting among the submitted papers. Our best thanks go to
Professor Cliff B. Jones for accepting our invitation to give an invited talk in
this symposium. Finally we would like to thank the students who have submitted
to and participated in the Doctoral Symposium, without whom this event would
not even materialize.

September 2009 MohammadReza Mousavi and Emil Sekerinski
Co-Chairs of FM 2009 Doctoral Symposium
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Exploiting Architectural Constraints and
Branching Bisimulation Equivalences in
Component-Based Systems

Christian Lambertz*

Department of Computer Science, University of Mannheim, Germany
lambertz@informatik.uni-mannheim.de

Abstract. We introduce a condition for the verification of properties in
component-based systems that allows for components with variants and
hence supports reusability. Thereby, the architecture of the system and
behavior equivalences between the components are exploited in order to
cope with the state space explosion problem. We use the model of inter-
action systems as the component model and extend it with unobservable
behavior and a new composition operator.

1 Introduction

In component-based systems the fault-free composition of the components plays
an important role in order to construct fault-free systems. But, the well-known
state space explosion problem, that arises in the composition step, makes a di-
rect state space analysis unfeasible. Thus, many techniques were developed that
reduce the state space, e.g., compositional reasoning, partial order reduction, ab-
stract interpretation, and symmetry reduction. Another approach is to exploit
the architecture of the composed system.

The exploitation of the architecture and of behavioral equivalences is used
as such a technique by Bernardo et al. [1]. They introduce the notion of compo-
nent compatibility which means that the composite behavior of two components,
where any joint action is concealed, is weak bisimilar to the behavior of one of
the components with corresponding concealed actions. For instance, if a compo-
nent b which only interacts with one component m is compatible to m, then b is
not important for the global behavior of the system. Instead of considering both
components one can safely consider only m.

This approach is extensible to the whole system. It is particularly suited for
acyclic architectures, such as star-like or tree-like ones. For instance in star-like
architectures, the compatibility check is performed for every border component
together with the central component. If it succeeds, the behavior of the whole
system can be reduced by only considering the behavior of the central compo-
nent.

* 1 thank my advisor Mila Majster-Cederbaum for proposing this research direction.



A similar idea is used by Hennicker et al. [5]. They call the compatibility be-
havior neutrality and provide a reduction strategy for such neutral components.

However, as shown by our example in Sec. 3, the mentioned strategies are not
suited for versatile components that offer many variants for different contexts.
This versatility supports the reusability property that is typically desired in
component-based system design. Similarly arguing, the compatibility assumption
of [1] is rather restrictive. If a border component alters the behavior of the central
component but this alteration is not important for the interaction with the other
components, the approach already fails.

Our contribution to overcome the versatility problems of the existing ap-
proaches is that we propose a condition that allows for more liberal alterations.
We use interaction systems by Gossler and Sifakis [4] as the component model.
Note that our technique does not rely on this model; our ideas carry over to
other models of concurrency as well. The key idea of interaction systems is the
separation of the components’ description and their glue code. Each component’s
description consists of a static and a dynamic part. The static part describes the
available actions for cooperation, and the dynamic part models the local behav-
ior as a labeled transition system. The glue code is described as a set of so-called
interactions and models the cooperation. The global behavior can be computed
by combining the local behaviors according to the glue code. We extend the orig-
inal definition of [4] by the concept of closed interactions that cannot be used
for further compositions and that become unobservable in the global behavior.
Additionally, we provide a new composition operator.

In the following, we focus on component systems with star-like and tree-like
architectures. This is reasonable since many interesting cases, e.g., master/client
architectures, follow such a pattern. In CSP, for instance, the connection diagram
of processes constructed with the subordination operator forms a tree [6].

Furthermore, we use branching bisimilarity (denoted by =2} in the following)
instead of weak bisimilarity (denoted by =), which is used by Bernardo et al. [1]
and Hennicker et al. [5], because branching bisimilarity preserves more properties
of systems (a logical characterization of =, in CTL*-X exists [2]), it is more
efficient to calculate, and, as remarked by van Glabbeek and Weijland [3], many
system that are weak bisimilar are also branching bisimilar.

2 Definitions

Before we give a precise definition of interaction systems, we define several op-
erators for the manipulation of sets that are needed in the following.

Definition 1 (Set Manipulation). Let X and Y be two sets of sets with
XNY=0oVvXNnY ={@}. The (nonempty) interjoin of these sets is denoted
by XY :={zUy |z e XNye YI\{BLUXUY), ie., the interjoin
contains only new sets that were not contained in X or Y before. The power set
of a set x is denoted by p(x) := {z’ | 2’ C x}. We overload this operator for sets
of sets, i.e., the union of all power sets of sets x contained in X is denoted by



©(X) :=U,ex ©(z). The set of sets X is said to respect the sets in Y, denoted
by XCY,ifVeeX JyeY:zCy.

Definition 2 (Interaction System). An interaction system is defined by means
of a tuple Sys := (K,A,Int, I"tclosem{Tz‘}ieK)- Here K is a finite set of com-
ponents, which are referred to as i € K. The actions of component i are given
by the action set A; with the property Vi,j € K:i # j = A;NA; = 2. All
available actions are contained in the global action set A 1= J;cx As.

A nonempty finite set a« C A of actions is called an interaction if it contains
at most one action of every component, i.e., |aNA;| <1 for alli € K. For any
interaction « and component i we put i(a) := A; Na. We say that i participates
inaifi(a) £ 9.

The interaction set Int of Sys is a set of interactions that covers all actions,
i.e., Uaelnt a =A. The set of closed interactions Int.j,seq C Int contains inter-
actions that cannot be used to create new interactions among the components (we
define later how this creation works). An additional special interaction, the un-
observable interaction 7, is available but not contained in the global interaction
set, i.e., T & Int.

Finally, for each component i a labeled transition system T; describes the
local behavior of i, i.e., T; 1= (Qi, A;, A, qio) where @; is the local state space,
each local alphabet A; contains all actions of component i, the local transition
relation is A; € Q; x A; x Q;, and ¢P € Q; is the local initial state.

The global behavior of Sys is a labeled transition system [Sys] := (Q, A A, qo)
which is obtained in a straightforward manner. The global state space is given
by Q := Xiek Q;. States are denoted by tuples q := (qi, ..., qn), and the global
initial state is ¢° := (¢?,..., Q). The global alphabet A := Int\ Intcioseq U {7}
contains all non-closed interactions and the special interaction 7. The global
transition relation A C @ x A x @ is defined canonically: For any o € Int and
any q,q € Q we have

- (g,a,¢) €A if a & Inteipsea and ¥V i € K: if i(a) = {a;} then (¢, a;,q]) €
A; and if i(a) =& then ¢; = ¢} and

-(q,7,¢') € A if a € Inteipseq and ¥V i € K if i(a) = {a;} then (¢, a;,q}) €
A; and if i(a) = & then ¢ = ).

Next, we define a composition operator for interaction systems. This compo-
sition should only be possible for disjoint interaction systems: Two interaction
systems Sys and Sys’ are disjoint, if their set of components and global action
sets are disjoint.

Definition 3 (Composition: Interconnecting Interaction Systems). Let
Sys and Sys’ be two disjoint interaction systems, and let [T C o(Int\ Int,joseq) X
p(Int" \ Int! ) be a set of new interactions. Let I~ C (Int \ Intcosed) U

closed

(Int" \ Int!,,..q) with I~ T I be a set of old interactions that should not be
included in the composite interaction system because any of these old interactions
is part of a new interaction. Let (IT,17) denote this composition information.

The composition of Sys and Sys’ with respect to the composition information



is the interaction system Sys ® Sys' = (KUK, AUA',(IT U IntU Int") \
(I+,1-)
I_’ Intclosed U [ntélosem { Ti}iEKUK’)’
We now define subsystems of interaction systems by considering subsets of
the components. Afterwards, we define an operator for declaring interactions as
closed.

Definition 4 (Subsystem Construction). Let Sys be an interaction system
and K1 C K a set of components. The subsystem of Sys obtained by only con-
sidering the components in Ky, denoted by Sys|Ki], is the interaction system
Sys[K1] := (K1, A[K1], Int[K1], Inteioseal K1), { T} e, ) with A[K1] := U, e g, Ais
Int[K1] == {a NA[K1] | o € Int ANaNA[K1] # @}, and Inteipsea[ K1) == {a €
Intciosed | a C A[Kl]}

Definition 5 (Closing of Interactions). Let Sys be an interaction system and
T be a set of interactions. The closing of the interactions contained in I in Sys,
denoted by Sys\\[, is the interaction system Sys\\[ = (K,.A, Int, Int.jpseq U

(INInt),{Ti};cx)-

In order to avoid confusing parentheses when the three operators are used to-
gether, we define the following order of operators: In the absence of parentheses,
subsystem construction takes precedence over closing, which takes precedence
over composition.

In the following, we focus our analyses on systems with a particular archi-
tecture: The interaction graph of an interaction system Sys contains a node for
every component and the set of edges {{i,7} | 3 a € Int such that components
1 and j participate in a} If the interaction graph forms a tree in the graph-
theoretical sense we say that Sys is tree-like. If it contains exactly one inner
node we say that Sys is star-like.

Note that the above definition of tree/star-like interaction systems implies
that all interactions are binary. Furthermore, we assume for simplicity that any
tree-like interaction system that is considered in the following satisfies the exclu-
sive communication property, i.e., any action of any component is only contained
in interactions with exactly one other component. This requirement does not re-
strict our approach, because an arbitrary tree-like interaction systems Sys can be
transformed into an equivalent tree-like interaction system Sys’ with exclusive
communication in polynomial time [7].

3 Motivation: Versatile Merchandise Management
System

Consider a merchandise management system (MMS) for wholesalers which man-
ages orders of customers and supplies in the wholesaler’s storage. Therefore, the
MMS offers several modes of operation: A wholesaler may deliver after receiv-
ing an order, may demand from the customer to ask for a reservation before
ordering, and may accept direct orders but request nevertheless a reservation for



internal purposes. Additionally, any reservation is printed out for internal use.
This versatile behavior is reasonable if we assume that the MMS was developed
by a software company that wants to sell the MMS as a software component to a
variety of wholesalers. We consider now a particular wholesaler that bought and
uses this MMS who has a storage system in which every product needs to get
reserved before it will be delivered. Additionally, this wholesaler requests from
its customers to ask for a reservation before placing an order. This setting is
modeled as an interaction system with three components representing the MMS
m, the storage system s, and a customer c. The behavior of the components is
depicted in Fig. 1. Obviously, this interaction system is star-like.

Do . : :
ﬁz@z‘ S: l C: l

22
reservem ° orderm

reserves
delivers
aske
order.

Fig. 1. Behavior of the components: the MMS m, the storage system s, and the customer c.

The interactions are given by Int := {{reserve,,, reserve,}, { deliver,,, delivers},
{askn,, ask.}, {order,,, order.}, {print,, } }. Note that many more customers could
be added to the system, e.g., the customers are classified into several groups. Fur-
thermore, many more storage systems could be added, e.g., distributed storage
places exist each with an own system. Of course, the star-like architecture is
preserved this way.

We want to verify the deadlock-freedom of the system. If we want to use the
approach of Bernardo et al. [1] or Hennicker et al. [5], we have to check whether
the behavior of the subsystem consisting of either a storage system or a customer
composed with the MMS is weak bisimilar to the behavior of the MMS where
any action used in an interaction in the former system is closed. We need to
check all such pairs.

Stated in our notation, we need to check for i := s, ¢ whether [Sys[{m, i}] \ Tn.]

? R N
~ [Sys[{m}]\ I,,;] holds where I,,, ; denotes the interactions in which both m
and ¢ participate. This is not the case for ¢ = ¢ as illustrated in Fig. 2, because
the path “7 {deliver,,}” is only possible in the latter system.

(&7.2 .
&

&/

Fig. 2. Global behavior of Sys[{m, ¢}]\\ In,. (on the left) and Sys[{m}]\ Im, (on the right).



But, this path is not possible in the global system, i.e., the restrictions that
component ¢ puts on m play no role for the interaction with component s. We
can express this situation with the following equivalence:

[Susttm, N\ e © Susl{shl] = [Suslim)] N Fe © Sslis)]]

where (m, s) denotes the composition information of m and s. Since this equiv-
alence holds and also

[Susttm. s\ Fws © Sysl{ell] = [Swslim} |\ Is @ Syslle)]

holds, we can conclude that no border component restricts the central compo-
nent m in a way, that the interactions of m with any other border component
are interfered.

Next, we formalize the ideas behind the example and show how it can be
applied to arbitrary interaction systems whose topology follows a particular
architectural constraint. Afterwards, we complete the example by showing its
deadlock-freedom.

4 Exploiting the Architecture and Branching Bisimilari-
ties

Consider an interaction system Sys with a star-like architecture, i.e., one central
component is surrounded by border components and each border component
interacts only with the central component. Note that we have already extended
our approach to tree-like systems. The following theorem is also applicable in
the tree-like case because such a systems consists of many star-like subsystems.
Thereby, we use the graph-theoretical center of the interaction graph as the
central component of the tree-like system.

An arbitrary border component ¢ in Sys does not interfere the central com-
ponent m, if any restriction put on m by 4 plays no role for the interaction of m
with any other border component. Of course, the border component i is allowed
to restrict the behavior of the central component, but only in this non-interfering
way. The idea behind the non-interference is that the border component 7 does
not heavily influence the global behavior of the system and its behavior can
be neglected in the analysis. We formalize this idea for all border components
in Theorem 1. Thereby, the non-interference is modeled by branching bisimilar
behavior.

Theorem 1. Given a star-like interaction system Sys with exclusive communi-
cation. Let m denote the central component. If for all distinct pairs i,j € K\{m}
holds

[Sys[{m, i)\ Ln.i 2 Sys[{i ] =o [Sys{mN\ Ln,q 2 Sys[{7}]]

with I, ; = {a € Mt[{m,i}] | « & mt[{m}] v 3 € Int[{m, z}] a Cd'}
and (m,j) = (IJr I, ;) in each case with I+J = Int[{m,j}] and I, ; == {a €
Int[{m}} U Int[{j }] | « & Int[{m,j}]} then it holds that

[Sys \ 1] ~4 [Sys[{m, k}]\ 1]



with T := Uier\(m.x} Ini={aent|agmt{mk} VI elnt: acCa}
and an arbitrary border component k € K \ {m}.

Theorem 1 shows that the global behavior of a star-like interaction system
Sys, which could be too large for a direct analysis, can be minimized if certain
equivalences between subsystems hold. But, the minimization is only useful if
properties of Sys are preserved. Fortunately, branching bisimilarity preserves
many properties [2]. The following corollary provides this preservation for the
minimization.

Corollary 1. Given a star-like interaction system Sys with exclusive commu-
nication and a property expressed as a CTL*-X formula ¢. Let m denote the
central component of Sys and k one of the border components.

If Theorem 1 holds for Sys, i.e., [Sys\ 1] ~s [Sys[{m,k}]\ I] with I :=
{a€nt|agntl{m,k}] VI €nt: a Ca'}, and if no interaction in which
a border component but component k participates is used as an atomic proposition
in ¢, i.e., AP(¢) C (Int \ j) U {L}, then the satisfiability of ¢ in Sys is implied
by the satisfiability of ¢ in Sys[{m,k}], i.e., Sys[{m,k}] E ¢ = Sys E ¢.

Completing the Example in Section 3 We want to verify the deadlock-freedom
of the MMS by verifying whether the CTL*-X formula ¢ = AG EF t¢rue holds.
We apply Theorem 1, and since it holds and Sys[{m, c}| satisfies ¢, the system
is deadlock free.

5 Future Work

If the premises of Theorem 1 do not hold for all border components, a smaller
system could be obtained by only considering a subsystem which satisfies the
theorem. Additionally, special protocols which represent small parts of a compo-
nent’s behavior could be used to further simplify the checks. Other architectures
are also under consideration.
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Using CSP for Software Verification

Moritz Kleine

Technische Universitdat Berlin
Institute for Software Engineering and Theoretical Computer Science
Berlin, Germany
mkleine@cs.tu-berlin.de

Abstract. In this paper, we present our approach to verifying software
by synthesizing a CSP model from its compiler intermediate representa-
tion. This allows us to reason about the implementations of concurrent
programs on the CSP level and to reuse existing CSP tools. The corre-
spondence of an implementation to its CSP-based specification can be
established by proving that the synthesized CSP model is a refinement
of the specification. The main contribution of this work is a new source-
language-independent semi-automated approach to verifying concurrent
software.

1 Introduction

This research addresses the problem of building usable software verification sys-
tems for concurrent systems implemented in a general-purpose programming
language. One problem in this field is developing efficient tools and integrated
tool chains supporting software verification. Additionally, still an active field
of research is the development of specification languages that are suitable for
software verification, e.g. Spec# [1], KeY-C [12] and VCC [2]. To facilitate the
verification of concurrent programs, we propose an approach that builds on the
automated synthesis of a low-level CSP model from the compiler intermediate
representation (IR) of their implementation-level description. Our work explores
several ways of building the low-level model, which formalizes the IR of the pro-
gram and outlines different ways of exploiting the low-level model for software
verification.

1.1 Brief Introduction to CSP

Communicating Sequential Processes (CSP) is a process calculus developed in
the early 1980s [4]. It is capable of specifying and verifying reactive and con-
current systems, where the modeling of communication plays a key role. CSP
is equipped with a rich set of process operators for defining possibly infinite
transition systems by, for example, prefixing (¢ — P), sequential composition
(Py; P3), hiding (P\A) and parallel composition (P;[| A]Ps). The semantics of
CSP processes can be given in different ways. The most popular semantics are
trace semantics, failure semantics and failure-divergence semantics [13]. All these



semantics are supported by the automatic refinement checker FDR2 [4], which
is one of the tools we use for verification purposes.

CSP), is a machine-readable version of CSP that has been developed as
the input language for the FDR2 tool. CSP); extends CSP by a small but
powerful functional language, which offers constructs such as lambda and let
expressions and supports advanced concepts like pattern matching and currying.
The language provides a number of predefined data types, e.g. booleans, integers,
sequences and sets, and also allows user-defined data types. The global event set
is defined by the set of typed channel declarations of a CSP; script.

CSP  is now the de facto standard of machine-readable CSP. Besides FDR2,
the model checker and animator ProB [10] supports CSP s, so CSPj; models
can also be explored by animation and verified by LTL model checking.

1.2 Brief Introduction to LLVM

The Low Level Virtual Machine (LLVM) compiler infrastructure provides a mod-
ular framework that can be easily extended by user-defined compilation passes. It
also offers a diverse set of predefined analyses and optimizations that can be used
out of the box. This makes LLVM a great platform for the development of source
code transformation and analysis tools. The heart of the compiler infrastructure
project is its intermediate representation (IR). It is a typed assembler-like lan-
guage [9], which is used internally as the basis for compiler optimizations. The
LLVM framework provides gcc-based frontends for a variety of programming
languages.

2 Synthesizing a Low-Level CSP Model

In [8], we sketched how to synthesize a low-level CSP model from the LLVM
IR of a concurrent program. The idea underlying this approach is depicted in
Fig. 1. Instead of following the classical approach of refining specifications semi-
automatically down to executable code, we propose that the software engineering
process begin with the development of a high-level specification in some CSP-
based formalism, on the top level and that the refinement chain be cut at a
level that still abstracts from implementation details. On the top level, either
a CSPy, specification or a specification in an arbitrary CSP-based formalism
for which a transformation into CSP); exists, is required. It is then the pro-
grammer’s job to produce efficient and robust code ! — symbolized by arrow (1).
Unlike code obtained using automatic code generators, our approach makes it
more feasible to create high-performance code that meets the application’s needs
in terms of memory and power consumption. This procedure induces a seman-
tic gap between the high-level specification and the final implementation, which
we bridge by generating another CSP model. This model is semi-automatically

! Robust code is commonly understood to be not only free of bugs but also well
structured, human-readable and adhere to a given set of coding guidelines so that
the code is easy to maintain and extend.
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High-level
Specification

_@.» (CSP-based) F JZ)\A
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Model (CSPm) ‘\Q y (C++)
LLVM
Compiler IR

Fig. 1. Illustration of our verification methodology.

obtained from the LLVM IR, which is created during the compilation process
with an LLVM-based compiler, symbolized by arrows (3) and (2), respectively.
Fig.1 also relates the generated CSPj; model to the high-level specification by
arrow (4), which stands for a refinement proof. This is necessary to prove that
the implementation meets its specification. Steps (3) and (4) can be used to
investigate the implementation from different points of view. Especially if inde-
pendent aspects have to be met by the implementation, they should be explored
separately. This reduces the size of the low-level model, which is desirable for
analysis by refinement and model checking.

The low-level CSPj; model contains not only processes, types and channels
that are generated from the LLVM IR of a program but also two predefined
parts which model platform- and domain-specific parts of the system under in-
vestigation. The platform-specific part comprises the environment model and
hardware details, while the domain-specific part encompasses aspects that are
common to a domain of applications, e.g. system startup and scheduling, which
are provided as foundation libraries that the program builds on. These two parts
are mostly manually modeled but are parameterized so that they can be reused
by all applications of the domain they have been designed for. Examples of such
parameters are typing information for the channels and the set of thread identi-
fiers. The third part is the application-specific one, which describes the behavior
of the threads of a multithreaded program with respect to a set of given vari-
able names, function calls and annotations 2. We are currently implementing an
LLVM tool that realizes the automated part of the synthesis process (arrow (3)).
This tool was used to create the low-level model of the scheduler of the BOSS
operating system pico-kernel, which we presented in [7].

3 Design of the Low-Level CSP Model

As discussed in the previous section, the low-level CSP model is divided into
three distinct parts. The domain- and platform-specific parts are manually mod-

2 Annotations can be realized using so-called ghost method and ghost variables. A
ghost method is a method that modifies ghost variables only, while a ghost variable
is a variable that is used for verification purposes only. Ghost code is commonly
compiled into the IR for verification purposes but is not part of the final binary.
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channel readl, writel, read2, write2, read3, read4, write3, write4 : {0,1}
Vi = let V1°(v) = readl!v -> V1’(v) [] writel?x -> V1’ (x)
within readi?x -> V1 [] writel?x -> V1’(x)
V2 = Vi[[readl <- read2, writel <- write2]]
V3 = Vi[[readl <- read3, writel <- write3]]
V4 = Vi[[readl <- read4, writel <- write4]]
WithHeap(P) = (P) [l{lreadl, writel, ..[}I] (Vi [I| V2 ||| V3 ||| V4)

Fig. 2. CSP,; model of the heap.

eled but are parameterized. The parameters and the application-specific part are
synthesized from the LLVM IR of the program under consideration. Since we aim
to use FDR2 for establishing the formal refinement relation between the spec-
ification and the low-level model, all models must be designed as efficiently as
possible. The FDR2 manual contains a couple of rules that have to be taken
into account when creating a CSPj; model to achieve the best performance with
FDR2. Fig. 2 shows an efficient example of modeling a memory that stores four
bit fields, constructed of parallel processes (V1,..., V4) that model a single
variable each. These four processes are structurally equal, so just one of them is
modeled manually (V1), the others being derived from it by renaming 3. This
model of a memory is a process, which is synchronized with the application
specific part later on using the function (WhithHeap). We use this concept to
model the heap and the stacks of the threads. The process allows us to read an
arbitrary value from uninitialized memory cells.

Our approach makes strong use of abstraction to reduce the size of the re-
sulting low-level model in terms of reachable states. This includes abstracting
the ranges of data types and abstracting away regions of code that do not tran-
sitively influence any of a given set of variables to be included in the low-level
model. If, for example, concurrent accesses to a shared counter variable have to
be proved race-condition-free, it is sufficient to build the model from the accesses
to this shared counter and the locks protecting it.

The expressiveness of CSP); imposes a limiting factor to formalizing the
semantics of LLVM IR. We therefore restrict ourselves to modeling facilities
that are available in CSP ;. Our approach currently supports functions, function
calls, conditional and unconditional branching as well as integer arithmetic. It
builds on a memory model that supports integers, arrays and uninitialized values.
Depending on the properties to be proved on the models, we also use the concept
of error codes to detect such sources of unwanted behavior or to signal situations
that were introduced by abstractions during synthesis of the model. An error
code is a fresh event a ¢ ¥ and is always used in the pattern a — STOP. In [§],
we use this concept to detect integer overflow that was introduced by abstraction
and did not indicate a real error in the low-level model. A method on the LLVM

3 One of the rules mentioned before is, for example, that renaming is to be used in
preference to the parameterizing of a process definition.
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IR level is translated into a CSP,; function that returns sequential processes,
each modeling a single IR operation. These application-specific processes end
up in a domain-specific process modeling the continuation of the application,
possibly including a thread switch. Further details of the application-, domain-
and platform-specific models are given in [§].

4 Analyzing the Low-Level Model

The low-level CSP model can then be either proved (or disproved) to be a re-
finement of its specification using the refinement checker FDR2 or animated and
analyzed with the LTL model checker ProB. In [11, prop. 6], Leuschel et. al. state
that the satisfaction of LTL formulas, which are limited to properties on traces,
is preserved by failures refinement for finitely branching processes. Thus if one
manages to generate a low-level model from the implementation level descrip-
tion, which is finitely-branching and a failures refinement of its specification, an
LTL formula that has been proved to hold on the specification also holds on the
low-level model. In this section, we clarify some issues that arise in the context
of CSP refinement and LTL model checking of CSP specifications. ProB sup-
ports an LTL dialect that supports the formulation of properties on traces and
refusals of processes. In addition to the temporal operators G, F, X, U and the
logical connectives conjunction, disjunction and implication, ProB supports the
e operator for this purpose. The expression e(a) checks if the event a is enabled
in the current state, for example. Prop. 6 does not extend to these kind of LTL
properties, as demonstrated by the following example:

P=g—-Pnib—P RQ=a0a—Q0O0b— Q

¢ = G((e(a) = = e(D)) A (e(b) = = e(a)))

@ is a failures refinement of P, ¢ holds on P but does not hold on Q. It follows
that only a subset of LTL supported by ProB can be used as long as satisfaction
of LTL formulas is needed. The proof of Prop.6 neither refers to the situation
of two processes that are deadlock-free nor to specific sets of refusals except the
set of all events. Thus, the only interesting situation is the one of a deadlocking
state. Trace refinement with the additional requirement that the two processes
are deadlock-free does preserve satisfaction of LTL formulas. Since we do not
wish to limit ourselves to deadlock-free specifications, we define the notion of
LTL satisfaction preserving refinement which is trace refinement and whenever
a trace of the implementation cannot be extended further (it deadlocks), the
same trace of the specification cannot be extended in the specification either.
We plan to implement this kind of refinement as a variant of the existing trace
and failure refinement checking procedures of the FDR2 tool. Another option
that we are considering is switching from CSPj; to CSP# and implementing
this refinement as an extension of the PAT [14] toolkit.
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5 Conclusions and Future Work

In this paper, we presented a CSP-based methodology for verifying the imple-
mentations of concurrent systems. Verifying such a system requires both its
abstract CSP-based specification and the LLVM IR of its implementation. Our
methodology determines how significant parts of a low-level model can be synthe-
sized from the LLVM IR of the implementation and it requires that the low-level
model be a refinement of the specification. Our approach enables us to use state-
of-the-art CSP tools such as FDR2 and ProB for the automated verification of
concurrent programs written in a high-level programming language supported
by the LLVM system. In this respect, it is source-language independent.

Instead of outputting a CSPj; script for animation, model and refinement
checking, we plan to output Isabelle/HOL code, e.g. for the CSP-Prover the-
ory [6]. Targeting an Isabelle/HOL theory would enable us to use a much more
powerful type system than that of CSPj;. Additionally, it would eliminate the
need to justify the abstractions introduced when reducing the ranges of the types
so that model and refinement checking can be applied to the CSPj; model. To
retain the automated nature of our approach, future work will also need to de-
velop abstractions to keep the low-level models of a reasonable size as our use
cases grow in code size.
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1 Introduction

In the analysis of realistic systems, one has to cope with different and heteroge-
neous dimensions that have to be modelled and ideally automatically verified.
Real-world systems, e.g., the European Train Control System (ETCS) [1], are
determined by process and communication aspects, by rich data structures, and
by real-time behaviour. In [2] the ETCS system is modelled using the combined
specification language CSP-OZ-DC (COD), which is designed to deal with these
system dimensions; a verification approach for COD against Duration Calculus
(DC) [3] formulae is provided. But unfortunately, realistic systems are most of-
ten too complex to be verifyable fully automatically. So, further decomposition
methods are necessary. [2] provides an intuitive manual decomposition that splits
the system and a global safety property according to an abstract behavioural
protocol. It divides the system runs into several phases (e.g., braking phase,
running phase, etc.) with local properties (defined as DC formulae) that hold
during these phases. Once the desired property’s correctness for such a protocol
is established, one only has to verify that the local properties are fulfilled by the
system model to guarantee correctness of the global property.

The aim of this conceptual work is to generalise this approach. We extend the
specification language CSP [4] by data constraints and undefined processes and
show that it is suited to specify those protocols. We introduce a sequent-style
calculus over this CSP extension that allows for establishing desired properties
under local real-time assumptions. All concrete specifications that are instantia-
tions of abstract protocols and for that the local assumptions are valid automat-
ically inherit the desired properties. With a simple proof rule (that we do not
present here) it is possible to show efficiently that a concrete specification is such
an instantiation. The correctness of the local assumptions can be shown using es-
tablished methods for the assumptions’ logic. This integration of an operational
language to describe protocols and a declarative (real-time) language to describe
local properties of a system to simplify verification of large systems distinguishes
our approach from standard refinement/implementation approaches, e.g., CSP
refinement [5] or data refinement for Z [6]. Hence, we call this combination of
abstract protocol and local assumptions Verification Architecture.

We summarise our contributions: (1) We provide a new conceptional ap-
proach on how to use design patterns, called Verification Architectures (VA),

* This work was partly supported by the German Research Council (DFG) under
grant SFB/TR 14 AVACS. See http://www.avacs.org for more information.
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as a decomposition technique to enable verification of large systems. (2) We in-
troduce a CSP dialect with data, undefined process parts, and local real-time
assumptions for the specification of VAs. (3) A new sequent-style calculus over
this CSP dialect allows for the verification of desired properties of those VAs.
(4) Using a train control system motivated by the ETCS similar to the example
from [2], we provide evidence that our method enables the automatic verification
of a system that is too large to be verified without decomposition techniques.
The paper is structured as follows. Section 2 explains our approach formally.
We introduce the CSP extension and, exemplary, some sequent calculus proof
rules in Sect. 3. Section 4 concludes with experimental results and related work.

2 General Approach

Let va(p) be an abstract behavioural protocol depending on a vector of para-
meters p. We will use CSP processes with data for the specification of those
protocols. Additionally, we consider assumptions asmi(p), ..., asm,(p) over va
that also depend on the parameters — here the assumptions are dense real-time
properties that are given as DC formulae. Our aim is to show that a global safety
property safe(p) is valid for every possible model that is an instantiation of the
abstract protocol va with assumptions asmy (), ..., asm, (P).

To apply our approach, we have to show in a first step that the architecture
together with the assumptions is correct for all possible parameter valuations:

(VPova® A N asmi(p)) | safe(p) 1)

1=1,...,n

This verification task to verify the correctness of the abstract parametric model
va is for realistic systems not necessarily easy (in general, it cannot be done
by model checking) and we will provide proof rules for the verification. But
once it is verified, this result is reusable as all instantiations of this architecture
inherit the correctness property automatically. We only have to show that it is
an instantiation of the abstract CSP protocol and that the local assumptions
asmy, . .., asmg are valid, which is due to their locality easier than to verify the
global property safe directly. To be more concrete, we consider an instantiation
codc(Po) of the abstract protocol va, where Pg represents an instantiation of
the parameters. As specification formalism, we use the parametric, combined
specification language CSP-OZ-DC (COD) [7,8,2], since it is in line with the
focused system class of complex, heterogeneous real-time systems. We now apply
the result of the architecture’s correctness from (1) to conclude the correctness
of the concrete model code. Firstly, we have to show that every trace of cod¢
from the trace set [cod¢], is also a trace of va, i.e., [codc] C [va]. This relation
can be shown syntactically for a specific class of instantiations. Thus, it is easy to
verify. Secondly, we have to show that the assumptions are valid for the concrete
specification:

codc (po) = /\ asm; (Do) (2)

1=1,...,n
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This can be done by applying existing model checking techniques [2] for COD
and DC. With this, our approach yields that the desired safety property is valid
for the concrete model. We argue that this proposition is correct. From (1) we
can conclude (3), due to [codc] C [va] it then follows (4), and with (2) we get
the desired property codc(po) | safe(pg).

va(Pg) A | /\ asm; (Do) = safe(Do). (3)
codc(Po) A /\ asm; (Do) | safe(Do) (4)
i=1,...,n

We summarise that if a correct Verification Architecture is given, we only
have to show that, firstly, a model is actually a concrete instantiation of the VAs
abstract protocol and, secondly, the model fulfils the architecture’s assumptions.
Then we can conclude the correctness of the entire model.

3 Sequent Calculus for CSP Processes with Data

In this section, we give a short idea of our CSP extension and its embedding into
the dynamic logic dCSP that allows for specifying and verifying VAs.

To be able to specify VAs, we need a high degree of freedom to handle general
patterns of parametric systems with data. To this end, we introduce an extension
to CSP with data constraints to define state changes and a new construct, so-
called undefined processes. Undefined processes are special processes that allow
the occurrence of arbitrary events except for events from a fixed alphabet and
arbitrary changes of variables except for variables from a fixed set. Undefined
processes can terminate and may be restricted by constraints from an arbitrary
logic (at least, if this logic has the same semantical domain as CSP with data).
On the level of CSP, these constraints are handled as black boxes that restrict
the possible behaviour of a process.

Definition 1. The syntax of CSP processes with data and undefined processes
over a set of events Fvents, variables Var, and formulae Formy is given by

P:=S8top|Skip|(aep) =P |PLOPy|P||Po|Pi]laPa|P1gP| X

| (Proc\a,v e, F) | (PrOC@,V' F)

ext

where a € Bvents, A C FEvents, V C Var, p € Formy, and F is a constraint in
an external logic ext.

In this definition, a difference to the standard CSP definition is that we have
constrained occurrences of events a e . As formulae we consider many-sorted
first order formulae with predicates and function symbols from a signature
Y = (Sort, Func, Var, Par) with primed and unprimed variables Var, parame-
ters Par, and functions Func with sorts from Sort. The intuition is that when
the event a occurs the state space is changed according to the constraint ¢,
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[a — Skip]Up A [a — Skip][P]ep P20 = 620 ¥, F F ey [Procy a v]6 Sks

[« = PO Taew) Ssepp O ¥ F [Procya.v ., Fo
(5) (7)

Fig. 1. Some example rules from the sequent calculus; the formulae 1&? denotes
the replacement of a variables 7 in v with fresh variables 7.

where unprimed variables in ¢ refer to the variable valuations before the occur-
rence of a and primed variables to the valuations after a. The intuition behind
an undefined process like (Proc\(4,4},{v} ®pc ) is that during the execution
of the process arbitrary behaviour is allowed provided that the DC formula F'
is not violated. The events a and b are forbidden and the variable v cannot
be changed in this execution. An undefined process marked with the oo symbol
Proc® will never terminate.

We embedded CSP into dynamic logic [9] to reason about CSP processes with
data and undefined processes. The idea of this dynamic logic extension dCSP
is to use CSP processes with data and undefined processes instead of programs
within the box operator [ -] and the diamond operator (- ). The dynamic logic
operator [P]0p expresses that on all runs of the CSP process always ¢ holds,
whereas [P]d states that after every run ¢ is true. Analogously, (P)Oe is used
to express that there is at least one run where eventually ¢ holds.

To prove validity of dCSP formulae, we define a set of verification rules in
a sequent-style proof calculus. Given finite sets of formulae A and I', a se-

quent A = I' is an abbreviation for the formula A\, c¢ = Vyep . Our se-
L2IR CEEE M S
T a

quent calculus consists of rule schemata of the shape
can be instantiated with arbitrary contexts, i.e., for every A and I' the rule
A’QSIHPI’FA pm FA’QS"HP"’F is part of the calculus. As usual, formulae above the
line are prémisés and the formula below the line the consequence: if the premises
(and possibly some side-conditions) are true then the consequence also holds.

Figure 1 gives some example proof rules. The rule in (5) reduces a CSP prefix
expression: to prove that [y holds for ¢ — P we have to show that during
execution of a Oy holds and that after the occurrence of a during every run of
P also Oy holds. The following rule (6) reduces a single occurrence of an event
a in a process a — Skip. The idea is to symbolically execute the data change as
defined in the constraint i of event a: after an execution of the data change in
1) the post-state of a variable v given by v’ need to coincide with the pre-state
of this variable in §. Hence, to show that after every execution of a — Skip
the dCSP formula § holds, we show that the constraint 1, where every primed
variable v’ is replaced by a fresh variable v,, implies 5?, i.e., §, where every v
replaced by vp. Rule (7) demonstrates how undefined processes with assumptions
are handled. To show that on every run of a process (Proc\4,v e, I') the dCSP
formula § is valid, we need to show that a new constraint ¢ is valid in the logic
of F and that in our sequent calculus, § implies §. If F' is a DC formula then we
may show & with existing proof methods for DC [2]. By this means, our approach
flexibly integrates arbitrary timed logics to formulate assumptions on undefined
processes.
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A = {check, fail, pass, extend}, C = {RD, CT}

System = FAR 8 check ® Qcheck — @eheck = Z(sf) N sf < RD A ok’ = false
(fail ® @fay — REC V Z(sf) A sf > RD A ok’ = true
O pass ® Ypass — System) Prait = Z(sf) N ok = false
O extend ® Qeptend — System Ppass = Z(sf) N ok = true
FAR = Proc\4,c ® Frar Frar = ~O([sf > RD] "¢ < CT " [sf < 0])
REC = ProchA,C e FrEC Frec = ~0O([sf > 0] [sf <0])

Pextend = Sf/ > sf

Fig. 2. VA for a small Train Control System

4 Conclusion

Ezperimental Results. To validate our approach, we verified an architecture for
the small example Train Control System in Fig. 2 motivated by the ETCS [1].
We were able to prove the desired safety property sf > RD + [System]Osf > 0
using the presented sequent calculus. To apply rules like rule (7), we made use
of automatic DC verification methods [2,10]. In a second step, we proved the
correctness of a concrete instantiation of the VA from Fig. 2. This instantia-
tion were given as a COD model, for that direct verification was not possible
(timeout after 80h) due to its complexity with 19 real-valued variables, over 300
locations, and 17000 transitions. But as the model is an instantiation of the VA,
which can be syntactically checked with a simple refinement rule, we only needed
to verify the local DC formulae Frar and Frrco (Fig. 2) to conclude the safety
of the entire system. This was done automatically with the PEA toolkit [10] in
Th (Fpagr) and 4m (Frge), respectively.

Related work. Our work is inspired by [11], where a fixed DC design pattern
for cooperating traffic agents is introduced. Other approaches to combine CSP
with data and real-time are, e.g., [7] and [12]. The former, which we also make
use of in this work, is not appropriate for a proof-rule base approach because
of the more complex combination that integrates CSP, DC, and OZ [13] in an
object-oriented class structure. The latter likewise integrates CSP within Z con-
structs. Further combinations of CSP, OZ, and a real-time language are TCOZ
[14] and RT-Z [15]. There is a lot of work in compositional methods for real-
time systems: [16,17] introduce a sequent calculus to verify temporal properties
for hybrid systems; they also examine fragments of the ETCS as case study.
Compositional techniques for the verification of operationally specified real-time
systems like timed automata can be found, e.g., in [18,19]. A general view on
formalisation techniques for design patterns gives [20], but there, verification of
real-time systems is not considered. A related approach using design patterns
for a high-level real-time language is [21]: timed automata patterns for a fixed
set of timing constraints are given and formally linked to TCOZ.

This is work in progress: We defined CSP with data and undefined processes,
the embedding into dynamic logic, and a set of proof rules. Furthermore, the
refinement rule for the instantiation of VAs with concrete COD specifications is
proven correct. A proof for the correctness of the calculus is not finished yet. We
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have tool support [10] for checking local DC assumptions. Tool support for our
sequent calculus and the refinement rule is future work. But experiments with
examples from the railway domain and automatic verification of the most time-
consuming parts (checking DC assumptions) show the success of our method.

References

1.

2.

S Tk

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

ERTMS User Group, UNISIG: ERTMS/ETCS System requirements specification.
http://www.aeif .org/ccm/default.asp (2002) Version 2.2.2.

Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration
calculus: A practical approach. Formal Aspects of Computing 20 (2008) 481-505
Zhou, C., Hansen, M.R.: Duration Calculus. Springer (2004)

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
Roscoe, A.: Theory and Practice of Concurrency. Prentice Hall (1998)
Woodcock, J., Davies, J.: Using Z - Specification, Refinement, and Proof. Prentice
Hall, London (1996)

Hoenicke, J.: Combination of Processes, Data, and Time. PhD thesis, University
of Oldenburg, Germany (2006)

Faber, J., Jacobs, S., Sofronie-Stokkermans, V.: Verifying CSP-OZ-DC specifica-
tions with complex data types and timing parameters. In Davies, J., Gibbons, J.,
eds.: IFM. Volume 4591 of LNCS., Springer (2007) 233-252

Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing. MIT
Press (2000)

Hoenicke, J., Meyer, R., Faber, J.. PEA Toolkit. http://csd.informatik.uni-
oldenburg.de/projects/epea.html (2006) University of Oldenburg, Germany.
Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents.
International Journal of Control 79 (2006) 395 — 421

Woodcock, J.C.P., Cavalcanti, A.L.C.: A concurrent language for refinement. In
Butterfield, A., Pahl, C., eds.: IWFM’01. BCS Elec. Works. in Computing (2001)
Smith, G.: The Object Z Specification Language. Kluwer Academic P. (2000)
Mahony, B.P., Dong, J.S.: Blending object-Z and timed CSP: An introduction to
TCOZ. In: ICSE. (1998) 95-104

Siihl, C.: An overview of the integrated formalism RT-Z. Formal Asp. Comput 13
(2002) 94-110

Platzer, A., Quesel, J.D.: Logical verification and systematic parametric analysis
in train control. In Egerstedt, M., Mishra, B., eds.: HSCC 2008. Volume 4981 of
LNCS., Springer (2008) 646-649

Platzer, A.: Differential Dynamic Logics: Automated Theorem Proving for Hybrid
Systems. PhD thesis, University of Oldenburg, Germany (2008)

Larsen, K.G., Pettersson, P., Yi, W.: Compositional and symbolic model-checking
of real-time systems. In: Proceedings of the 16th IEEE Real-Time Systems Sym-
posium. (1995) 76-89

Berendsen, J., Vaandrager, F.W.: Compositional abstraction in real-time model
checking. In Cassez, F., Jard, C., eds.. FORMATS. Volume 5215 of LNCS., Springer
(2008) 233-249

Taibi, T.: Design Pattern Formalization Techniques. IGI Publishing, Hershey, PA,
USA (2007)

Dong, J.S., Hao, P., Qin, S., Sun, J., Yi, W.: Timed patterns: TCOZ to timed
automata. In Davies, J., Schulte, W., Barnett, M., eds.: ICFEM 2004. Volume
3308 of LNCS., Springer (2004) 483-498


http://www.aeif.org/ccm/default.asp

A Formal Model to Develop and Verify
Self-Adaptive Systems

Narges Khakpour

Faculty of Electrical and Computer Engineering
Tarbiat Modares University, Tehran
nkhakpour@modares.ac.ir

1 Introduction

Problem Statement Increasingly, software systems are subjected to adapta-
tion at run-time due to changes in the operational environments and user require-
ments. Adaptation is classified into two broad categories: structural adaptation
and behavioral adaptation. While structural adaptation aims to adapt system
behavior by changing system’s architecture, the behavioral adaptation focuses
on modifying the functionalities of the computational entities.

There are several challenges to developing self-adaptive systems. Due to the
fact that self-adaptive systems are often complex systems with greater degree
of autonomy, it is more difficult to ensure that a self-adaptive system behaves
correctly. Hence, one of the main concerns to developing self-adaptive systems is
providing mechanisms to trust whether the system is operating correctly where
formal methods can play a key role. Formal verification of adaptive systems is
a young research area [1]. Existing formal methods for analysis of adaptive sys-
tems mostly use transition systems and petri nets which are at the low levels of
abstraction(see e.g. [2,3,4,5]). So, offering new models to develop self-adaptive
systems that provide us formal verification techniques with a high level of ab-
straction is of a great interest to us.

flexibility is another main concern to achieve adaptation in software systems.
Since, hard-coded mechanisms make tuning and adapting of long-run systems
complicated, so we need methods for developing adaptive systems that provide
a high degree of flexibility. Recently, the use of policies has been given attention
as a rich and abstract mechanism to achieve flexibility in the self-managing sys-
tems. Although, policies have been used as the adaptation logic for structural
adaptation(see e.g. [6,7]) however, fewer work employ policies as a mechanism
for behavioral adaptation of self-adaptive software systems. Moreover, struc-
tural adaptation has been given strong attention in the research community(see
[8]), but fewer approaches tackle behavioral adaptation. Thus, we require new
methods to develop systems that provide us behavioral adaptation as well as
structural adaptation.

Thesis Sta