
1

Model-Checking: From
Hardware to Software

Marsha Chechik Arie Gurfinkel

FM 2006 Tutorial
August 22, 2006

2

Tutorial Overview
Part I: Introduction and Basics

Temporal logics (CTL, LTL), model-checking, counter-
example generation, symbolic model-checking, state-
of-the art model-checkers

Part II: Abstraction
Over-approximating, under-approximating and
Belnap abstractions and properties they preserve

Part III: Software Model- checking
Abstraction-refinement framework, techniques for
analyzing programs, building boolean programs,
refinement, relationships between abstract and
concrete systems, state of the art SoftMCs

Part IV: Usability Issues (time permitting)
Vacuity, understanding counter-examples, model
exploration with query-checking

3

Part I: Basics
Kripke structures as models of computation
CTL, LTL and property patterns
CTL model- checking and counterexample
generation
Techniques

Symbolic (BDD and SAT)
Explicit (reachability and non-termination)

State of the Art Model- Checkers

4

Overview of Automated Verification

Yes/No +
Counter-example

Yes/No +
Counter-example

SW/HW
Artifact

SW/HW
Artifact

Correctness
properties

Correctness
properties

Temporal
logic

Temporal
logicFinite

Model
Finite
Model

Model
Extraction
Model

Extraction TranslationTranslation

Model
Checker
Model

Checker

Correct?

AbstractionAbstraction

5

Computation Tree Logic (CTL)
CTL: Branching- time propositional temporal logic
Model - a tree of computation paths
Example:

Kripke Structure

Tree of computation

S1 S2

S3

S2

S1 S3

S1 S3S2

S2

S1

S1 S3 S1 S3

6

Models: Kripke Structures

Conventional state machines
K = <V, S, s0, I , R>
V is a (finite) set of atomic

propositions
S is a (finite) set of states
s0 ∈ S is a start state
I: S → 2V is a labeling function that maps each state
to the set of propositional variables that hold in it
Alternatively: a set of interpretations specifying
which propositions are true in each state
R ⊆ S × S is a transition relation.

req req,
busy

busy

s0

s2

s1

s3

2

7

Propositional Variables
Fixed set of atomic propositions {p, q, r}

Atomic descriptions of a system
“Printer is busy”

“There are currently no requested jobs for the printer”

“Conveyer belt is stopped”

Should not involve time!

8

CTL: Computation Tree Logic
propositional temporal logic

allows explicit quantification over possible futures
Syntax:
True and False are CTL formulae;
propositional variables are CTL formulae;
If ϕ and ψ are CTL formulae,

then so are: ¬ ϕ , ϕ ∧ ψ , ϕ ∨ ψ
EX ϕ : ϕ holds in some next state

EF ϕ : along some path, ϕ holds in a future state
E[ϕ U ψ] : along some path, ϕ holds until ψ holds
EG ϕ : along some path, ϕ holds in every state

Universal quantification: AX ϕ , AF ϕ , A[ϕ U ψ], AG ϕ

9

Examples

ϕ

EX ϕ (exists next)

ϕ

AX ϕ (all next)

ϕ

ϕ
ϕ

ϕ

ϕ

EG ϕ (exists global)

ϕ
ϕ

ϕ ϕϕ

ϕϕ ϕ ϕ ϕ

AG ϕ (all global)

ϕ

10

Examples (Cont’d)

ϕ

EF ϕ (exists future)

ϕ

ϕ ϕ

AF ϕ (all future)

ϕ

ϕ
ϕ

ψ

E[ϕ U ψ] (exists until)

ϕ
ϕ

ϕ ψ

ψ

A[ϕ U ψ] (all until)

ψ

11

CTL Examples
Properties that hold:

(AX busy)(s0)
(EG busy)(s3)
A (req U busy) (s0)
E (¬req U busy) (s1)
AG (req ⇒ AF busy) (s0)

Properties that fail:
(AX (req ∨ busy))(s3)

req req,
busy

busy

s0

s2

s1

s3

12

Some Statements To Express
An elevator can remain idle on the third floor with its
doors closed

EF (state=idle ∧ floor=3 ∧ doors=closed)

When a request occurs, it will eventually be
acknowledged

AG (request ⇒ AF acknowledge)

A process is enabled infinitely often on every
computation path

AG AF enabled

A process will eventually be permanently deadlocked
AF AG deadlock

Action s precedes p after q
A[¬q U (q ∧ A[¬p U s])]

Note: hard to do correctly. See later on helpful techniques

3

13

Semantics of CTL
K,s ⊨ ϕ – means that formula ϕ is true in state s. K

is often omitted since we always talk about the
same Kripke structure

E.g., s ⊨ p ∧¬q

π = π0 π1 … is a path
π0 is the current state (root)
πi+1 is πi’s successor state. Then,

AX ϕ = ∀π ⋅ π1 ⊨ ϕ EX ϕ = ∃π ⋅ π1 ⊨ ϕ
AG ϕ = ∀π ⋅ ∀i ⋅ πi ⊨ ϕ EG ϕ = ∃π ⋅ ∀i ⋅ πi ⊨ ϕ
AF ϕ = ∀π ⋅ ∃i ⋅ πi ⊨ ϕ EF ϕ = ∃π ⋅ ∃i ⋅ πi ⊨ ϕ
A[ϕ U ψ] = ∀π ⋅ ∃i ⋅ πi ⊨ ψ ∧ ∀ j ⋅ 0 ≤ j < i ⇒ πj ⊨ ϕ
E[ϕ U ψ] = ∃π ⋅ ∃i ⋅ πi ⊨ ψ ∧ ∀ j ⋅ 0 ≤ j < i ⇒ πj ⊨ ϕ

14

Relationship Between CTL Operators
¬AXϕ = EX ¬ϕ
¬AFϕ = EG ¬ϕ ¬EFϕ = AG ¬ϕ

AFϕ = A[true U ϕ] EFϕ = E[true U ϕ]
AG ϕ = ϕ ∧ AX AG ϕ EG ϕ = ϕ ∧ EX EG ϕ
AF ϕ = ϕ ∨ AX AF ϕ EF ϕ = ϕ ∨ EX EF ϕ

A [false U ϕ] = E[false U ϕ] = ϕ
A[ϕ U ψ] = ¬ E[¬ψ U (¬ϕ ∧ ¬ψ)] ∧ ¬EG ¬ψ
A[ϕ U ψ] = ψ ∨ (ϕ ∧ AX A[ϕ U ψ])
E[ϕ U ψ] = ψ ∨ (ϕ ∧ EX E[ϕ U ψ])
A[ϕ W ψ] = ¬ E[¬ψ U (¬ϕ ∧ ¬ψ)] (weak until)
E[ϕ U ψ] = ¬ A[¬ψ W (¬ϕ ∧ ¬ψ)]

15

Adequate Sets
Def. A set of connectives is adequate if all

connectives can be expressed using it.
e.g., {¬,∧} is adequate for propositional logic:

a ∨ b = ¬ (¬ a ∧ ¬b)

Theorem. The set of operators {false,¬, ∧} together
with EX, EG, and EU is adequate for CTL

e.g., AF (a ∨ AX b) = ¬ EG ¬ (a ∨ AX b) = ¬ EG (¬a ∧ EX ¬b)

EU describes reachability
EG – non-termination (presence of infinite
behaviours)

16

Sublanguages of CTL
A CTL formula is in ACTL if it uses only universal
temporal connectives (AX, AF, AU, AG) with
negation applied to the level of atomic
propositions

Also called “universal” CTL formulas
e.g., A [p U AX ¬q]

ECTL: uses only existential temporal connectives
(EX, EF, EU, EG) with negation applied to the level
of atomic propositions

Also called “existential” CTL formulas
e.g., E [p U EX ¬q]

CTL formulas not in ECTL ∪ ACTL are called
“mixed”

e.g., E [p U AX ¬q] and A [p U EX ¬q]

17

Linear Temporal Logic (LTL)
For reasoning about complete traces through the

system

Allows to make statements about a trace

S1 S2

S3

S2 S1S1 S2 S1

S2 S1S1 S2 S3

S2 S3S1 S3 S3

S2 S3S1 S1 S2

S2 S3S1 S3 S1

18

LTL Syntax
If ϕ is an atomic propositional formula, it is a
formula in LTL
If ϕ and ψ are LTL formulas, so are ϕ ∧ ψ, ϕ ∨ ψ,
¬ ϕ, ϕ U ψ (until), X ϕ (next), Fϕ (eventually), G ϕ
(always)
Interpretation: over computations π: ω ⇒ 2V which
assigns truth values to the elements of V at each
time instant

π ⊨ X ϕ iff π 1 ⊨ ϕ
π ⊨ G ϕ iff ∀i ⋅ π i ⊨ ϕ
π ⊨ Fϕ iff ∃i ⋅ π i ⊨ ϕ
π ⊨ ϕ U ψ iff ∃i ⋅ π i ⊨ ψ ∧ ∀ j ⋅ 0 ≤ j < i ⇒ π j ⊨ ϕ
Here, π i – i ’th state on a path

4

19

Properties of LTL
¬ X ϕ = X ¬ ϕ

F ϕ = true U ϕ
G ϕ = ¬ F ¬ ϕ
G ϕ = ϕ ∧ X G ϕ
F ϕ = ϕ ∨ X F ϕ

ϕ W ψ = G ϕ ∨ (ϕ U ψ) (weak until)

A property holds in a model if it holds on every path
emanating from the initial state

20

Expressing Properties in LTL
Good for safety (G ¬) and liveness (F) properties
Express:

When a request occurs, it will eventually be
acknowledged

G (request ⇒ F acknowledge)

Each path contains infinitely many q’s
G F q

At most a finite number of states in each path satisfy
¬q (or property q eventually stabilizes)

F G q

Action s precedes p after q
[¬q U (q ∧ [¬p U s])]

Note: hard to do correctly. See later on helpful techniques

21

Comparison between LTL and CTL
Syntactically: LTL is simpler than CTL
Semantically: incomparable!

CTL formula EF ϕ (reachability) not expressible in LTL
LTL formula F G ϕ not expressible in CTL

What about AF AG ϕ?

Has different interpretation on the following state machine:

AF AG ϕ is false

F G ϕ is true

LTL and CTL coincide if the model has only one
path!

ϕ ϕ

22

Property Patterns: Motivation
Temporal properties are not always easy to write
or read

e.g., G ((q ∧ ¬r ∧ F r) ⇒ (p ⇒ (¬r U (s ∧ ¬r)) U r)
Meaning:

p triggers s between q (e.g., end of system initialization) and r
(start of system shutdown)

Many useful properties are specifiable in both CTL
and LTL

e.g., Action q must respond to action p:
CTL: AG (p ⇒ AF q)

LTL: G (p ⇒ F q)

e.g., Action s precedes p after q
CTL: A[¬q U (q ∧ A[¬p U s])]

LTL: [¬q U (q ∧ [¬p U s])]

23

Pattern Hierarchy
http://patterns.projects.cis.ksu.edu/
Developers: Dwyer, Avrunin, Corbett
Goal: specifying and reusing property specifications for

model-checking

Absence: A condition does not occur within a scope
Existence: A condition must occur within a scope
Universality: A condition occurs throughout a scope
Response: A condition must always be followed by

another within a scope
Precedence: A condition must always be preceded by

another within a scope
24

Pattern Hierarchy: Scopes
Scopes of interest over which the condition is

evaluated

5

25

Using the System: Example
Property

There should be a dequeue() between an enqueue()
and an empty()
Propositions: deq, enq, em

Pattern: “existence” (of deq)
Scope: “between” (events: enq, em)
Look up (S exists between Q and R)

CTL: AG (Q ∧ ¬ R ⇒ A[¬ R W (S ∧ ¬ R)])

LTL: G (Q ∧ ¬ R ⇒ (¬ R W (S ∧ ¬ R)))

Result
CTL: AG (enq ∧ ¬ em ⇒ A[¬ em W (deq ∧ ¬ em)])

LTL: G (enq ∧ ¬ em ⇒ (¬ em W (deq ∧ ¬ em)))
26

CTL Model-Checking
Inputs:

Kripke structure K
CTL formula ϕ

Assumptions:
Finite number of processes

Each having a finite number of finite-valued variables

Finite length of a CTL formula

Algorithm:
Label states of K with subformulas of ϕ that are
satisfied there and working outwards towards ϕ.
Output states labeled with ϕ

Example: EX EG (p ⇒ E[p U q])

27

CTL Model-Checking (Cont’d)
EX ϕ

Label any state with EX ϕ
if any of its successors are
labeled with ϕ

E [ϕ U ψ]
If any state s is labeled with ψ,
label it with E[ϕ U ψ]

Repeat:
label any state with E[ϕ U ψ]
if it is labeled with ϕ and at

least one of its successors is
labeled with E[ϕ U ψ]

until there is no change

ϕ ϕ

ψϕ
ϕ

ψ
ψϕ

ϕ

ψ

ψϕ
ϕ

ψ
ψϕ

ϕ

ψ 28

CTL Model-Checking (Cont’d)
EG ϕ

Label every node labeled with ϕ by EG ϕ
Repeat:

remove label EG ϕ from any state that does not
have successors labeled by EG ϕ

until there is no change

ϕ
ϕ ϕϕ

ϕ

ϕ
ϕ ϕϕ

ϕ

ϕ
ϕ ϕϕ

ϕ

29

Counterexamples
Explain:

Why the property fails to hold
to disprove that φ holds on all elements of S, produce
a single element s ∈ S s.t. ¬φ holds on s.

counterexamples restricted to universally-quantified formulas

counterexamples are paths (trees) from initial state illustrating
the failure of property AG req

s0
s3

AF ¬req ∨ AX req
s0

req req,
busy

busy

s0

s2

s1

s3

busyreq

req

req,
busys1

busy s3 30

Generating Counterexamples
Negate the prop. and express using EX, EU, EG

e.g., AG (ϕ ⇒ AF ψ) becomes EF(ϕ ∧ EG ¬ ψ)

EX ϕ :
find a successor state labeled with ϕ

EG ϕ:
follow successors labeled

with EG ϕ until a loop
is found

ϕ

6

31

Generating Counterexamples (Cont’d)

E[ϕ U ψ]:
remove all states not labeled with
ϕ or ψ, then look for path to ψ

This procedure works only for universal properties
AX ϕ
AG (ϕ ⇒ AF ψ)
etc.

ϕ
ϕ

ψ

32

State Explosion
How fast do Kripke structures grow?
Composing linear number of structures yields exponential growth!

How to deal with this problem?
Symbolic model checking with efficient data structures (BDDs,
SAT).

Do not need to represent and manipulate the entire model

Abstraction

Abstract away variables in the model which are not relevant to the
formula being checked (Part II of tutorial)

Partial order reduction (for asynchronous systems)

Several interleavings of component traces may be equivalent as far as
satisfaction of the formula to be checked is concerned

Composition

Break the verification problem down into several simpler verification
problems

33

Symbolic Model Checking (with BDDs)
Why?

Saves us from constructing a model state space
explicitly. Effective “cure” for state space explosion.

How?
Sets of states and the transition relation are
represented by formulas. Set operations are defined
in terms of formula manipulations

Data Structures
ROBDDs – allow for efficient storage
and manipulation of logic formulas

Example:
x∧y

x

y

F T

F T

T

F

34

Representing Models Symbolically
A system state represents an interpretation (truth

assignment) for a set of propositional variables V
Formulas represent sets of states that satisfy it

False = ∅, True = S
req – set of states in which req is

true – {s0, s1}
busy – set of states in which busy is

true – {s1, s3}
req ∨ busy = {s0, s1 , s3}

State transitions are described by relations over two
sets of variables: V (source state) and V’
(destination state)
Transition (s2, s3) is ¬req ∧ ¬ busy ∧ ¬req’ ∧ busy’

Relation R is described by disjunction of formulas for individual
transitions

req req,
busy

busy

s0

s2

s1

s3

35

Representing Boolean Functions

easymediummediumeasyeasyoftenReduced
OBDDs

hardhardhardhardhardneverOrdered truth
tables

hardhardeasyeasyhardsometimesFormulas in
CNF

hardeasyhardhardeasysometimesFormulas in
DNF

easyeasyeasyhardhardoftenProp. formulas

¬∨∧validitysatisf’tycompact?Representation
of boolean
functions

36

Model-Checking Techniques (Symbolic)
BDD

Express transition relation by a formula, represented
as BDD. Manipulate these to compute logical
operations and fixpoints
Based on very fast decision diagram packages (e.g.,
CUDD)

SAT
Expand transition relation a fixed number of steps
(e.g., loop unrolling), resulting in a formula
For this unrolling, check whether the property holds
Continue increasing the unrolling until error is found,
resources are exhausted, or diameter of the problem
is reached
Based on very fast SAT solvers (e.g., ZChaff)

7

37

Model-Checking Techniques (Explicit State)
Model checking as partial graph exploration
In practice:

Compute part of the reachable state-space, with
clever techniques for state storage (e.g., Bit-state
hashing) and path pruning (partial-order reduction)

Check reachability (X, U) properties “on-the-fly”, as
state-space is being computed

Check non-termination (G) properties by finding an
accepting cycle in the graph

38

Pros and Cons of Model-Checking
Often cannot express full requirements

Instead check several smaller properties

Few systems can be checked directly
Must generally abstract

Works better for certain types of problems
Very useful for control-centered concurrent systems

Avionics software

Hardware

Communication protocols

Not very good at data-centered systems
User interfaces, databases

39

Pros and Cons (Cont’d)
Largely automatic and fast
Better suited for debugging

… rather than assurance

Testing vs model- checking
Usually, find more problems by
exploring all behaviours of a downscaled system

than by
testing some behaviours of the full system

40

Some State of the Art Model-Checkers
SMV, NuSMV, Cadence SMV

CTL and LTL model-checkers
Based on symbolic decision diagrams or SAT solvers
Mostly for hardware

Spin
LTL model-checker
Explicit state exploration
Mostly for communication protocols

STeP and PVS
Combining model-checking with theorem-proving

Part II

Model Checking and Abstraction

42

Abstraction: the key to scaling up

represents a
set of states

abstraction

Original
system

abstract state

Abstract
system

Too large to
analyze directly

Small, but possibly not
precise enough for
conclusive analysis

8

43

Part II: Abstraction
Defining an Abstract Domain

variable elimination, data abstraction, predicate
abstraction

Abstraction for Universal/Existential Properties
over- and under-approximations

Abstraction for Mixed Properties
3-valued abstraction

Overlapping Abstract Domains
Belnap (4-valued) abstraction

44

Defining an Abstract Domain

α α αα α

Abstraction α : S→S’

S

S’

γ γ γ γγ

Concretization γ : S’→2S

45

Abstraction Function: Variable Elimination
Partition variables

… into visible and
… and invisible

Abstract states
valuations of visible variables
ignore invisible variables

Abstraction function
maps each state to its projection over visible
variables

46

Variable Elimination: Example

0 0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

α

x1 x2 x3 x4

x1 x2

Group concrete states with identical visible part
into a single abstract state

47

Abstraction Function: Data Abstraction
Partition the data domain

e.g., {EVN,ODD}, {NEG,ZERO,POS}

Abstraction maps concrete values to elements of
the partition

POS NEG ZERO

1 -3 0
3 -4 0
6 -1 0
… … …

α

x1 x2 x3

x1 x2 x3

48

Abstraction Function: Predicate Abstraction
Pick a finite set of predicates

e.g., {x > y, y < z}

Abstraction groups concrete states based on their
valuation to all of the predicates

0 1

-2 1 9
-1 2 8
-3 3 7
… … …

α

x y z

p1 p2

p1: x > y
p2: y < z

9

49

Abstract Kripke Structure
Abstract interpretation of atomic propositions

I ’(a, p) = true iff forall s in γ(a), I (s, p) = true
I ’(a, p) = false iff forall s in γ(a), I (s, p) = false

Abstract Transition Relation (2 choices)
Over-Approximation (Existential)

Make a transition from an abstract state if at least one
corresponding concrete state has the transition.

Under-Approximation (Universal)
Make a transition from an abstract state if all the corresponding
concrete states have the transition.

50

Computing Over-Approximation
R∃∃ [DGG97]:

(a, b) ∈ R’ iff ∃ s ∈ γ(a) s.t. ∃ t ∈ γ(b) and (s, t) ∈ R

This ensures that K’ is an over- approximation of
K, or K’ can match all behaviors of K.

∃ ∃

51

Over-Approximation (Existential Abstraction)

52

Preservation via Over-Approximation
Let φ be a universal temporal formula (ACTL, LTL)
Let K’ be an over- approximating abstraction of K

Preservation Theorem
K’ ⊨ φ implies K ⊨ φ

Converse does not hold
K’ ⊭ φ does not imply K ⊭ φ !!!
K’ may have extra behaviors

K’

K

53

Computing Under-Approximation
R∀∃ [DGG’97]:

(a, b) ∈ R’ iff ∀ s ∈ γ(a), ∃ t ∈ γ(b) and (s, t) ∈ R

This ensures that K’ is an under- approximation of
K, or K can match all behaviors of K’.

∀ ∃

54

Under-Approximation (Universal Abstraction)

10

55

Preservation via Under-Approximation
Let φ be an existential temporal formula (ECTL)
Let K’ be an under- approximating abstraction of K

Preservation Theorem
K’ ⊨ φ implies K ⊨ φ

Converse does not hold
K’ ⊭ φ does not imply K ⊭ φ !!!
K’ may miss some behaviors

K

K’

56

Which abstraction to use?

Under-TrueExistential
(ECTL) Over-False

Under-False
Over-TrueUniversal

(ACTL, LTL)

Abstraction
to use

Expected
Result

Property
Type

But what about mixed properties?!

57

Part II: Abstraction
Defining an Abstract Domain

variable elimination, data abstraction, predicate
abstraction

Abstraction for Universal/Existential Properties
over- and under-approximations

Abstraction for Mixed Properties
3-valued abstraction

Overlapping Abstract Domains
Belnap (4-valued) abstraction

58

3-Valued Kleene Logic
Information Ordering

⊥

f t
true

false

unknown

t ⋀ ⊥ = ⊥
t ⋁⊥ = t

¬t = f
¬⊥ = ⊥

Truth Ordering

⊥
f

t

59

3-Valued Kripke Structures

p = t
q = f

p = f
q = f

p = t
q = ⊥

t

f

⊥
Kripke structures extended to 3-
valued logic
Propositions can be

True, False, or Unknown

Transitions
possible: ⊥
necessary and possible: t
impossible: f

s0

s2

s1

⊥
t

⊥

60

3-Valued Abstraction

p

p
q

t

f

⊥p

p
q

over-approximation

under-approximation

p

p
q

3-Valued Abstraction

11

61

Example Revisited (3-Val Abstraction)

⊥

⊥

⊥

⊥
⊥
⊥t

tt
⊥

62

Model-Checking with 3 Values

Usual semantics of temporal
operators
BUT connectives ⋀ ⋁ ¬ are
interpreted in 3-Valued
Logic

t

f

⊥

(EX ¬p)(s0) = t
(EX q)(s0) = ⊥
(EX ¬p⋀q)(s0) = f

Examples

s0

s2

s1

p

p
q

(EX φ)(s) = ⋁t R(s,t) ⋀ φ(t)

63

Preservation via 3-Valued Abstraction
Let φ be a temporal formula (CTL)
Let K’ be a 3- valued abstraction of K

Preservation Theorem

K ⊨ φ or K ⊨ ¬φMaybe (⊥)

K ⊨ ¬φFalse (f)

K ⊨ φTrue (t)

Concrete
InformationAbstract MC Result

Preserves truth and falsity of arbitrary properties!

no
information

64

Part II: Abstraction
Defining an Abstract Domain

variable elimination, data abstraction, predicate
abstraction

Abstraction for Universal/Existential Properties
over- and under-approximations

Abstraction for Mixed Properties
3-valued abstraction

Overlapping Abstract Domains
Belnap (4-valued) abstraction

65

Example: Coarse Abstract Domain

s0

s1

s2

p
q

q s3

a0 a1

Over-Approximation Under-Approximation

p?
qa0 a1

p?
q

a0 a1

AX (p ⋁ ¬p) is
inconclusive

EX (q) is
true

Goal: make AX conclusive as well, via domain refinement

66

Example: Refined Abstract Domain

s0

s1

s2

p
q

q s3

a0

Over-Approximation Under-Approximation

AX (p ⋁ ¬p) is
true

EX (q) is
inconclusive

a2

a3

p
q

a0

a2

q a3

p
q

a0

a2

q a3

Partitioned domain does not work!
Need an overlapping abstract domain!!!

12

67

Example: Overlapping Abstract Domain

s0

s1

s2

p
q

q s3

a0

Over-Approximation Under-Approximation

AX (p ⋁ ¬p) is
true

EX (q) is
true

a2

a3
a1

p
q

a0

a2

q a3

p?
q a1

p
q

a0

a2

q a3

p?
q a1

68

Supporting Overlapping Abstract Domains
Goal

as before, want to combine over- and under-
approximations to support analysis of mixed
properties

Problem
3-valued logic is no longer sufficient
need to deal with 4 types of transitions

over-, under-, both over- and under-, and neither

i.e., under-approx is no longer a subset of over-approx

Solution
use 4-valued Belnap logic

69

Belnap Logic
Information Ordering

⊤

⊥

f t
true

false

unknown

inconsistent

t ⋀ ⊥ = ⊥
t ⋁⊥ = t

¬t = f

¬⊥ = ⊥

Truth Ordering

⊤⊥
f

t

70

Belnap Kripke Structures

f

⊥ ⊤
Kripke structures extended to
Belnap logic
Propositions

True, False, or Unknown

Transitions
only under-approximation: ⊤
only over-approximation: ⊥
both over- and under-: t
neither: f

p = t
q = f

p = f
q = f

p = t
q = ⊥

p = t
q = t

t
⊥

⊥ ⊤

t

71

Belnap Kripke Structures

p

p
q?

p
q

t

f

⊥ ⊤
p

p
q

p

p
q?

Over-approximation

Under-approximation
72

Multi-Valued Model CheckingClassical Model Checking

MV Logic
Answer

MV Logic
Answer

SW/HW
Artifact

SW/HW
Artifact

Correctness
properties

Correctness
properties

Temporal
logic

Temporal
logicFinite

Model
Finite
Model

Model
Extraction
Model

Extraction TranslationTranslation

Model
Checker
Model

Checker

Correct?

MV LogicMV Logic

[CDEG03]
Yes/No +

Counter-example

Yes/No +
Counter-example

13

73

Preservation via Belnap Abstraction
Let φ be a temporal formula (CTL)
Let K’ be a Belnap abstraction of K

Preservation Theorem

K ⊨ φ or K ⊨ ¬φ⊥
K ⊨ φ and K ⊨ ¬φ⊤

K ⊨ ¬φFalse

K ⊨ φTrue

Concrete
InformationAbstract MC Result

Preserves truth and falsity of arbitrary properties!

Not possible
for a sound
abstraction

74

Summary
Abstraction is the key to scaling up

1. Choose an abstract domain
Variable elimination, data abstraction, predicate abstraction, …

2. Choose a type of abstraction
Over-, Under-, 3Val, Belnap

3. Build an abstract model ($$$$$)
4. Model-check the property on the abstract model

5. If the result is conclusive, STOP
6. Otherwise, pick a new abstract domain, REPEAT

Next: Software Model Checking and Abstraction

Part III

Software Model Checking

76

Software Model Checking

Yes/No
Answer

Yes/No
Answer

Program
(in C or Java)

Program
(in C or Java)

Correctness
property

Correctness
propertyModel of

the program

Model of
the program

Model
Extraction
Model

Extraction

Model
Checker
Model

Checker

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

EF (pc = 5)

77

In Our Programming Language…
All variables are global
Functions are in- lined
int is integer

i.e., no overflow

Special statements:

x gets an arbitrary valuex=nondet()

non-deterministically go to L1 or L2goto L1,L2

x, y are assigned e1,e2 in parallelx,y=e1,e2
if e then skip else abortassume(e)
do nothingskip

78

From Programs to Kripke Structures

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

Program

…313

…yxpc

State

…212

…yxpc

Step

Property: EF (pc = 5)

14

79

Programs as Control Flow Graphs

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

Program Labeled CFG

Semantics S

1:

2:

3:4:

5:

6:

x,y=2,2

y<=2
y>2

x==2

x!=2

y=y-1

80

Model Checking Software
Programs are not finite state

integer variables
recursion
unbounded data structures
dynamic memory allocation
dynamic thread creation
pointers
…

ProgramProgram

Model Checker

Build a finite abstraction
… small enough to analyze
… rich enough to give
conclusive results

Abstraction

81

Software Model Checking and Abstraction

Program
P

Boolean
Program

BP

Kripke
Structure

K

Abstract
Kripke

K’

Semantics

Abstraction Abstract
Semantics

Soundness of Abstraction:

BP abstracts P implies that K’ approximates K

82

CounterExample Guided Abstraction
Refinement (CEGAR)

Abstract

Model Check Counterexample
Valid?

Refine

Is Safe?
(Is ERROR
unreachable)

Yes Yes

No

ProgramProgram

Predicates

No + Abstract
Counterexample

[ClGJLV00], [BR01]

Over-
Approximate

Boolean
Program

Boolean
Model

83

Outline
Programming Language

syntax and semantics

Predicate Abstraction for Programs
Boolean Programs as intermediate representation
Automatic computation of abstraction

Three abstract semantics of Boolean Programs
over-, under-, and Belnap abstractions

Discovering the “right” abstraction automatically
Counterexample-guided abstraction refinement
Finding a place to refine

counterexample- and proof-guided approaches

Discovering new predicates

Overview of state- of- the- art software MCs
84

The Running Example

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

EF (pc = 5)

Program Property Expected
Answer

False

15

85

An Example Abstraction

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = ch(b,f);
4: if (*)
5: ERROR:;
6:

Program Abstraction
(with y<=2)

86

Boolean (Predicate) Programs (BP)
Variables correspond to predicates
Usual control flow statements
while, if-then-else, goto

Expressions
usual Boolean expressions

*

ch(a,b)

Parallel Assignment
p1 = ch(a1,b1), p2 = ch(a2,b2), ...

b1 = ch(b1,¬b1), b2 = ch(b1⋁b2, f), b3=ch(f,f)

unknown if a then
true

else
if b then

false
else *

87

Detour: Weakest Preconditions
Def. A Hoare triple {P} C {Q} is a logical statement that holds

when
For any state s that satisfies P, if executing statement C on s

terminates with a state s’, then s’ satisfies Q.

Def. The weakest precondition of C with respect to Q
(denoted WP(C,Q)) is a formula P such that

1. {P} C {Q}
2. for all other P’ such that {P’} C {Q},

P’ ⇒ P (P is weaker then P’).

{P} C {Q}
Statement

Pre-condition
(boolean formula)

Post-condition
(boolean formula)

{3>y} x = 3 {x>y}

{x>0} x = 2+y {y>0}

{*x>3 ⋁ x = &y} y=5 {*x>3}

{false} y=5 {y<0}

✘

✔

✔

✔

88

Calculating Weakest Preconditions
Assignment (easy)

WP (x=e, Q) = Q[x/e]
Intuition: after an assignment, x gets the value of e, thus
Q[x/e] is required to hold before x=e is executed

Examples:
WP (x=0, x==y) = (x==y)[x/0] = (0==y)
WP (x=0, x==y+1) = (x==y+1)[x/0] = (0 == y+1)
WP (y=y-1,y<=2) = (y<=2)[y/y-1] = (y-1 <= 2)
WP(y=y-1,x==2) = (x==2)[y/y-1] = (x == 2)

89

Boolean Program Abstraction
Update p = ch(a, b) is an approximation of a
concrete statement S iff {a}S{p} and {b}S{¬p} are
valid

i.e., y = y – 1 is approximated by
(x == 2) = ch(x ==2, x!=2), and

(y <= 2) = ch(y<=2,false)

Parallel assignment approximates a concrete
statement S iff all of its updates approximate S

i.e., y = y – 1 is approximated by
(x == 2) = ch(x ==2, x!=2),

(y <= 2) = ch(y<=2,false)

A Boolean program approximates a concrete
program iff all of its statements approximate
corresponding concrete statements 90

Computing An Abstract Update
// S a statement under abstraction

// P a list of predicates used for abstraction

// t a target predicate for the update

absUpdate (Statement S, List<Predicates> P, Predicate q) {

resT, resF = false, false;

// foreach full conjunction of literals in P

foreach m : monomials(P) {

if (tpQ(“m ⇒ WP(S,q)”) resT = resT ⋁ m;

if (tpQ(“m ⇒ WP(S,¬q)”) resF = resF ⋁ m;

}

return “q = ch(resT, resF)”

}

16

91

absUpdate (y=y-1, P={y<=2}, q=(y<=2))

y = y - 1;

(y<=2) = ch (y<=2,f)

P is {y <= 2}

q is (y <= 2)

Theorem Prover Queries:
(y<=2) ⇒ (y – 1) <= 2
¬(y<=2)⇒ (y – 1) <= 2
(y<=2) ⇒ (y – 1) > 2
¬(y<=2)⇒ (y – 1) > 2

absUpdate

✔
✘
✘
✘

WP(y=y-1,y<=2) is (y -1) <= 2

WP(y=y-1,¬(y<=2)) is (y – 1) > 2

92

The result of abstraction

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = ch(b,f);
4: if (*)
5: ERROR:;
6:

Program Abstraction
(with y<=2)

But what is the semantics of Boolean programs?

93

BP Semantics: Overview
Over- Approximation

treat “unknown” as non-deterministic
good for establishing correctness of universal
properties

Under- Approximation
treat “unknown” as abort
good for establishing failure of universal properties

Exact Approximation
Treat “unknown” as a special unknown value
good for verification and refutation
good for universal, existential, and mixed properties

94

BP Semantics: Over-Approximation

1: ;
2: if (nondet) {
3: if (*)
4: ERROR;
5: if (nondet)
6: ERROR;
7: }

Abstraction

1:

2:

3:

5:

4:

7:

6:

Over-
Approximation

Unknown is treated as non-deterministic

95

BP Semantics: Under-Approximation

1: ;
2: if (nondet) {
3: if (*)
4: ERROR;
5: if (nondet)
6: ERROR;
7: }

Abstraction

1:

2:

3:

5:

4:

7:

6:

Under-
Approximation

Unknown is treated as abort
96

BP Semantics: Exact Approximation

1: ;
2: if (nondet) {
3: if (*)
4: ERROR;
5: if (nondet)
6: ERROR;
7: }

Abstraction

1:

2:

3:

5:

4:

7:

6:

Exact
Belnap KS

t

f

⊥ ⊤

“unknown”

“non-deterministic”

Unknown is treated as unknown

17

97

Summary: The Three Semantics

b1 = ch(b1,f);
b2 = ch(b2,¬b2)

b1
b2

b2

t

f

⊥ ⊤
Abstract

Over-Approx Belnap (Exact) Under-Approx

y = y - 1;

Concrete
b1 is (y <= 2)
b2 is (x == 2)

b1
b2

b2
b1?
b2

b1
b2?

b1
b2

b2
b1?
b2

b1
b2?

98

Summary: Program Abstraction

1. Abstract a program P by a boolean program BP
2. Pick an abstract semantics for this BP:

1. Over-approximating
2. Under-approximating
3. Belnap (Exact)

3. Yield relationship between K and K’:
1. Over-approximation (in the sense of Part II)
2. Under-approximation (in the sense of Part II)
3. Belnap abstraction (in the sense of Part II)

Program
P

Boolean
Program

BP

Kripke
Structure

K

Abstract
Kripke
K’

Semantics

Abstraction Abstract
Semantics

99

Outline
Programming Language

syntax and semantics

Predicate Abstraction for Programs
Boolean Programs as intermediate representation
Automatic computation of abstraction

Three abstract semantics of Boolean Programs
over-, under-, and Belnap abstractions

Discovering the “right” abstraction automatically
Counterexample-guided abstraction refinement
Finding a place to refine

counterexample- and proof-guided approaches

Discovering new predicates

Overview of state- of- the- art software MCs
100

CounterExample Guided Abstraction
Refinement (CEGAR)

Abstract

Model Check Counterexample
Valid?

Refine

Is Safe?
(Is ERROR
unreachable)

Yes Yes

No

ProgramProgram

Predicates

No + Abstract
Counterexample

[CGJLV00], [BR01]

Over-
Approximate

Abstract
Program

Boolean
Model

101

Example: Is ERROR Unreachable?

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

1: ;

2: while (*)
3: ;
4: if (*)
5: ERROR:;
6:

1:

2:

3:4:

5:

6:

Need This!

Program Abstraction Over-
Approximation

Abstract Translate Check Validate

CEGAR steps

Repeat
102

Example: Is ERROR Unreachable?

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = ch(b,f);
4: if (*)
5: ERROR:;
6:

Program Abstraction
(with y<=2)

Over-
Approximation

1:

2:b=T

3:b=T4:b=F

5:b=F

6:b=F

2:b=F

UNREACHABLE

Abstract Translate Check NO ERROR

CEGAR steps

18

103

Using Cex for Refinement

s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Counterexample

s0

s1

s2

ERROR

s4
t

f

⊥ ⊤

104

can stop here

cause

Using Proofs for Refinement

EF (ERROR) (s0) = ⊥
∃n EFn (ERROR)(s0) = ⊥

EF4 (ERROR)(s0) = ⊥
s0→s1 EF3(ERROR)(s1) = ⊥

s1→s2 EF2(ERROR)(s2) = t
s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Why?

Refine
HERE

t

f

⊥ ⊤

When proofs are used to guide the
refinement

only a part of the proof must be
generated
no need to validate the counterexample

… unknown steps are already marked in the
proof

Refinement is not limited to finite
linear explanations!

105

Finding Refinement Predicates
Recall

each abstract state is a conjunction of predicates
i.e., y<=2⋀x==2 y>2 ⋀ x!=2 etc.

each abstract transition corresponds to a program
statement

Result from
a partial proof

Unknown transition
s1→s2

MC needs to know
validity of

{s1} C {s2}

C is the statement
corresponding to

the transition

106

Refinement via Weakest Precondition
If s1→s2 corresponds to a conditional statement

refine by adding the condition as a new predicate

If s1→s2 corresponds to a statement C
Find a predicate p in s2 with uncertain value

i.e., {s1}C{p} is not valid

refine by adding WP(C,p)

107

An Example

{y>2⋀x==2} y = y-1 {y>2⋀x==2}

s1 → s2 is unknown

WP(y = y–1, y>2) = y>3

{y>2⋀x==2} y = y-1 {y>2} ✘

new predicate

{y>2⋀x==2} y = y-1 {x==2} ✔

pc=2
y>2
x==2

pc=3
y>2
x==2

108

Summary: Software Model Checking
SoftMC is an effective technique for analyzing
behavioral properties of software systems

Based on a combination of static analysis and
traditional model- checking techniques

Abstraction is essential for scalability
Boolean programs are used as an intermediate step
Different abstract semantics lead to different abs.

over-, under-, Belnap

Automatic abstraction refinement enables to find
the “right” abstraction incrementally

19

109

Overview of Software Model Checkers
Tools:

YASM
SLAM
BLAST
CBMC
MAGIC
Java PathFinder

Comparison parameters
Properties
Types of abstraction
Model-checking engine
How refinement is done

110

YASM
http://www.cs.toronto.edu/~arie/yasm
Properties: CTL
Abstraction: Predicate Over- and Under-
MC Engine: Symbolic BDD- based
Refinement: CTL Proof- based + WP

Yet Another Software Model-checker

111

YASM: System Architecture

Parser

Abstractor Refiner Predicate
generator

XChek

Answer
foo.c

Parse tree

Predicates

Partial
proof

Abstract model

Control-flow
graph

Initial predicates

Temporal Property

CUDD

CIL

CVCLite

~ 30K Java

112

Main Features of YASM
Checks real C programs

Not biased towards verification or refutation

Sound for both True and False answers

Can check arbitrary CTL property
… including liveness!

Handles recursive programs

113

Current Applications
BLAST Benchmarks [GC06]

Device drivers (4K-6K LOC)
Parts of OpenSSH (2K-3K LOC)

Split OpenSSH (100K LOC)
with UofT Security Group

Detecting setuid/seteuid security flaws
with UofT Security Group, in progress

Concurrent “Toy” Programs
Lamport’s Bakery Mutual Exclusion
Error detection in NASA RAX [PPV05]

Finding livelock bugs
“Can a library routine get stuck?”
with B. Cook at Microsoft Research, in progress

114

SLAM (Microsoft)
Part of Windows DDK Static Driver Verifier
Properties: Reachability
Abstraction: Predicate over- approximation
MC Engine: Symbolic BDD- based
Refinement: Symbolic simulation of cexs
Key Features:

very robust
supports recursion
(almost) in production use

20

115

BLAST
http://embedded.eecs.berkeley.edu/blast/
Properties: Reachability
Abstraction: Predicate over- approximation
MC Engine: Symbolic BDD- based

MC and abstraction are interleaved

Refinement: Predicates from a proof of
impossibility of a counter- example

116

SATABS & CBMC
http://www.inf.ethz.ch/personal/daniekro/satabs/
Properties: Bounded reachability
Abstraction: Predicate over- approximation
MC Engine: Symbolic SAT- based
Refinement: Symbolic simulation of cex +
UNSATCORE
Key Features: support for precise machine
arithmetic including bit- level operations

117

MAGIC
http://www.cs.cmu.edu/~chaki/magic/
Properties: Automata Simulation
Abstraction: Predicate over- approximation
MC Engine: SAT- based
Refinement: Symbolic simulation of cex
Key Features: support for concurrent C modules

118

Java PathFinder
http://javapathfinder.sourceforge.net/
Properties: Reachability
Abstraction: user- provided data abstraction
MC Engine: Explicit state with symbolic execution
Refinement: None
Key Features: support for Java including Objects
and Threads

Part IV

Usability Issues

120

Usability Issues (Our Work)

Yes/No +
Counterexample

Yes/No +
Counterexample

SW/HW
artifact

SW/HW
artifact

Correctness
properties

Correctness
properties

Temporal
logic

Temporal
logic

Model of
System

Model of
System

Model
Extraction
Model

Extraction TranslationTranslation

Model
Checker
Model

Checker

Trusting the
Yes answer

Obtaining “most
interesting”

counterexample

Finding “right”
properties

21

121

Some of
our projects

Multi-Valued
Model Checking

Reasoning with partial
and inconsistent
information

Multi-Valued
Model Checking

Reasoning with partial
and inconsistent
information

Software
Model Checking

Checking behavioral
properties of programs

Software
Model Checking

Checking behavioral
properties of programs

Understanding
Counterexamples

Understanding and exploring
results of automated analysis

Understanding
Counterexamples

Understanding and exploring
results of automated analysis

Temporal Logic
Query Checking

Computer-aided model
exploration

Temporal Logic
Query Checking

Computer-aided model
exploration

Vacuity Detection

How to trust
automated analysis

Vacuity Detection

How to trust
automated analysis

122

Problem of Vacuity
Computed counterexample – real error
No such information is given when property holds!

e.g., “every request is eventually acknowledged”
AG (req ⇒ AF ack)

Let K be a model that does not produce any requests
The formula holds in K “too easily” – vacuously

Satisfaction does not depend on the model -> modeling error?

Vacuity – real problem in practice
Case studies [BBER01] :

20% of properties hold vacuously

Vacuity always points to a problem in the design, its
specification, or its environment

123

Dealing with Vacuity: Manual Approach
Check that antecedent of implication is satisfied in
at least one state

EF (req) ∧ AG (req ⇒ AF ack)

Often hard to get right for long properties
Defeats the purpose of model- checking as
automatic technique

124

Our Vacuity Project [GC04]

Goal: Automated vacuity detection
Formalize the notion of vacuity
Create effective algorithms for

Identifying the cause of vacuity
Producing witnesses to non-vacuity

Create fast (comparable to model- checking in
speed and time) implementations

For model-checkers based on decision diagrams
VaqUoT (see demo at FM’06)

For SAT-based model-checkers
VaqTree (see demo at FM’06)

125

Check/Analyze/Fix

Answer +
Counterexample

Answer +
Counterexample

Correctness
property

Correctness
property

CheckCheck

AnalyzeAnalyze

FixFix

Model of
System

Model of
System

126

Towards shortening the cycle
Check phase

Running the model-checker, so want to
minimize # of runs

Analyze phase: time spent by a human
Too much evidence – BAD!

Hard to build a mental picture
Takes too much effort to reach the place of
interest
May not notice repeated patterns

Too little evidence – BAD!
If there are several reasons for a failure, may want
to see all of them
Ex.: f �g fails because BOTH are false

22

127

Interactive Explanations
User can control:

Kinds of evidence that get generated
i.e., prefer traces that go through the previously
explored part of the model

Amount of information generated and presented
By restricting the scope of exploration : AG (a → AF b)

Time a model-checker spends computing evidence
So they can continue exploring it manually

Advantages:
Amount of evidence generated is based on what user
is willing to understand
Amount of evidence displayed helps identify
“interesting” cases and aid with debugging

128

Navigational choices for witnesses
Choices

explicit (disjunction)
which part of property to consider

Example: (EF p) ∨ (EG q)
implicit (via EX)

which state to pick as a witness?

Example: EX p

By default, choice is random, with goal to find
shortest witness

p p¬p

s0

s1 s3
s2

129

Elevator Controller System
Button model

r – request to move has been generated
f – request is fulfilled, button can be reset

(request cannot be fulfilled before generated)
p – state of button (pressed or released)

p

r
p

r

p
f

7s

6s

5s
f
r

f

p
r

4s

f

0s 1s

2s

3s

130

Task 1: Getting the property right
Attempt 1: AG AF (floor = 3 ∧ door = open)

No: can get stuck on first floor
Attempt 2: AG(floor≠1 →AF(floor=3 ∧ door = open))

No: can get stuck on second floor

Solution 0: Hope for a sudden revelation!
Solution 1: Generate all counterexamples

Attempt 2:
No: can oscillate between first and second floor

Attempt 3: AG(btn3.r →AF(floor=3 ∧ door = open))
YES!

Solution 2: specify a strategy to avoid a state
where floor=1

i.e., can get multiple counterexamples without
modifying the property

131

Task 2: Reducing cognitive overload
Why: want to stay in the part of the program that
is already better understood

Designated state Idle
floor=1, doors are closed, direction is up, state is notMoving

Strategies:
Guide counterexample generator towards such state
Keep track of states visited during previous
verification

And choose those!

Exploration vs. verification
Verification: prefer most familiar part of system

Minimize distance to Idle

Exploration: prefer least familiar part of system
Maximize distance to Idle 132

Task 3: choosing “best” loop
Why? (Attempt at “shortest” counterexample)

Counterexamples for EG p properties:

Goal: find “best” loop
… around most familiar state (Idle)
… most interesting, using loop summaries

s s’

23

133
s1

EG p?

Example: best loop

3-state p loop

EX EG p

?

?

s2

? EG p

1-state p loop

EX EG p

?

?

?
?

?

Summaries

134
s1

EG p?

Example: best loop

3-state p loop

EX EG p

?

?
?

?
Strategy:
• Examine model from s1 to
depth 3 for witnesses to EG p

• Choose the shortest loop to
explore

135

How do we do it?
Create: a counter- example as a proof [CG06]

Proofs are great for capturing underlying structure
and navigating through it

Navigate:
By hand
Automated through strategies

Proof presentation
in terms of the model (i.e., traces, successors)

Generating proofs is not $$: they are gathered from results
of a model-checking run

136

Proofs

Good:
complete

available for all temporal properties

all information is here

Bad:
too verbose
not particularly intuitive. Where is the model?

∃n ∈ N⋅ EFn (f ∨ r)(s0)
EF2 (f ∨ r)(s0)

EX EX (f ∨ r)(s0)
R(s0, s1) EX(f ∨ r)(s1)

r(s2)
R(s1, s2) (f ∨ r)(s2)

EF (f ∨ r)(s0)

137

Proofs-like Witness

EF (f ∨ r)(s0)
EF2 (f ∨ r)(s0)

EX EX (f ∨ r)(s0)

EX(f ∨ r)(s1)
∃t R(s1, t) ∧ (f ∨ r)(t)

s0

Why does EF (f ∨ r)(s0) hold,
i.e., why is (f ∨ r) reachable?

r(s2)
(f ∨ r)(s2)

s1

Proof

Proof

Witness

Witness
s2

Proof

138

Overall Framework

24

139

Visualization Engine
Produce proof-like counterexamples

And present parts of model

Present proof summaries (“what is going to follow”)

Visualization strategies
Restrict scope of explanation (starting/stopping)

Example: EG EF (x ∧ EX x) and want to see witness to EF

Starting condition: EF (x ∧ EX x)

Stopping condition: x ∧ EX x

Give state name / variables in state
Display entire state / only changes
Verbosity of explanation

Proof / English summary

Forward/backward exploration
140

KEGVis: Witness view
a0:
p = T
r = F
f = F

a1:
r = T

141

KEGVis: Proof View

Temporal Logic Query
Checking

Computer-Aided Model
Understanding

143

Why Model Understanding

Implementation

ModelModel

SpecificationSpecification

Design

Verification

Testing

Software (Model) Engineering Model Understanding

Models

144

Model Understanding - Structural
Modules and dependencies

Design and architectural patterns

main.c

foo.c stuff.c

bar.c

25

145

Model Understanding - Behavioural

Scenarios
sample behaviors

Properties
succinct summaries of behaviors

Start

Sensor Database Actuator

Pressure

Control

Query

Data
Command

Pressure

Stop

“X is an invariant”
“X is eventually followed by Y”

146

Computer-Aided Model Understanding
Unguided

Property- Guided

ModelModel
Interesting
Properties

ModelModel

Templates
___ is an invariant

Template
Solution

X is an invariant

147

Example: Cruise Control System (CCS)
Maintains a speed of an automobile

Four major modes of operation
(indicated by variable CC)

CC = Off cruise control is off

CC = Inactive cruise control is idle

CC = Cruise maintaining the speed of the automobile
CC = Override overridden by the user

(i.e. brake pedal is pressed)

Relevant parts of the automobile are modeled as well
Ignition, Running, Brake, Throttle, etc

148

Sample Templates
What are all reachable modes?

T: “Mode ___ is reachable”
S: How each mode is reached?

Where can the system evolve to from mode Off?
T: “When Off is reached, mode ___ follows”
S: How does this happen?

What is known about Ignition, Running, and Brake
when CCS is Inactive?

T: When mode is Inactive, then ___ (w.r.t. Ignition,
Running, Brake)

What pairs of modes follow each other
T: “When mode ___ is reached, mode ___ follows”
S: How does this happen?

149

Query Checking

TL Property
p is an invariant

AG p

TL Query
What is an invariant?

AG ?
placeholder

p
¬q
r

¬p
q
r

p
q
r

s0

s2

s1

Propositional Solutions

(p ⋁ q) ⋀ r

p ⋁ q r
strongest

[Ch00]

150

Goals of TLQSolver Project [GCD03]

1. Extend the language of queries (templates)

2. Enable automated support for scenario
generation

3. Build a working implementation

4. Explore software engineering applications

26

151

The Language of Queries
Queries based on arbitrary CTL properties, with

multiple occurrence of a placeholder
e.g. “what happens twice in a row?”

EF (? ∧ EX ?)

several different placeholders
e.g. “what states can follow each other?”

EF (? ∧ EX ?)

allow restrictions on placeholders
e.g. “what modes can follow each other?”

EF (?{CC} ∧ EX ?{CC})
152

Detour: Multi-Valued Model-Checking

when values form a lattice
.. theory and implementation of all these tools is the same!

Boolean
MC

Model

Property
Yes
No

Partial
MC

Model

Property
Yes

No
Unknown

Many Val
MC

Model

Property

Yes
No

Unknown
Likely

Unlikely
Possibly

…XChek

[CDEG03]

153

Query-Checking as Multi-Valued MC

Multi-valued model-checker can iterate over such
lattices

… giving the appropriate element as a solution

Reduce query-checking to multi-valued model-
checking!

{p, ¬p, true}

{¬p, true}{p, true}

{true}
{}

{false, p, ¬p, true}true

¬pp

false

Lattice of
propositional

formulas over {p}
on implication

Lattice of possible solutions on
set inclusion

154

TLQSolver
Query-Checking via Multi-Valued Model-Checking

ModelModelCTL
Query

XChek

to MvCTL Explain

TLQSolver

Query
Answer

mvCTL
Property

MC
Result

155

TLQSolver

156

Generated Witness

Query:

EF((CC=Off) ∧ EX ?{CC})

27

157

Application: Guided Simulation
Simulation - a means of exploring a model

provide inputs, observe outputs
Example:

goal: explore evolution of CCS into its different modes

guess (!!) which inputs result in Inactive ⇒ Cruise and then
Cruise ⇒ Override, etc.

Guided simulation
specify objective via a query
witness serves as basis for simulation

Example:
goal: EF ? {CC}

prefer witnesses with largest common prefix

Output:

one trace: Off ⇒ Inactive ⇒ Cruise ⇒ Override

sequence of events:

@T(Ignition), @T(Running), @T(Button=bCruise), @T(Button=bOff)

no user input required!

158

Other Applications
Invariant discovery

e.g., what is true when CCS is in mode Cruise

Pre- condition discovery
e.g., what guarantees transition from Off to Inactive

Test case generation
Query encodes test coverage criterion
A witness is a test-suite achieving this coverage

Planning
Query encodes plan objective
A witness is a plan

159

Current/Future Work
General query- checking too expensive

exponential in # of states of the model

… and often “too much”:

State- based queries can be solved efficiently
polynomial in # of states of the model

See FM ’06 demo!

postdominator

Query: AF ?

Postdominators

stable

Query: EF AG ?

Stable states

160

Summary
Model understanding is an integral part of
software engineering activities
Computer- aided understanding is possible with
the use of templates
TLQSolver and Temporal Logic Queries

Expressive language of templates
Control over what scenarios are generated and
displayed
Applicable to various software engineering activities
Packets of easier query-checking problems

161

Our Work

Understanding
Counterexamples

Understanding and exploring
results of automated analysis

Understanding
Counterexamples

Understanding and exploring
results of automated analysis

Temporal Logic
Query Checking

Computer-aided model
Exploration

Temporal Logic
Query Checking

Computer-aided model
Exploration

Vacuity Detection

How to trust
automated analysis

Vacuity Detection

How to trust
automated analysis

Summary of Part IV

162

Tutorial Summary
Part I: Basics

Temporal logics (CTL, LTL), model-checking, counter-
example generation, symbolic model-checking, state-
of-the art model-checkers

Part II: Abstraction
Over-approximating, under-approximating and
Belnap abstractions and properties they preserve

Part III: Software Model- checking
Abstraction-refinement framework, techniques for
analyzing programs, building boolean programs,
refinement, relationships between abstract and
concrete systems, state of the art SoftMCs

Part IV: Usability Issues
Vacuity, understanding counter-examples, model
exploration with query-checking

28

163

References
[BBER01] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh.

“Efficient Detection of Vacuity in Temporal Model
Checking''. FMSD, Vol. 18, No. 2, pp. 141-163, March 2001.

[BR01] T. Ball, S. Rajamani. “The SLAM Toolkit”. In CAV’01.
[Ch00] W. Chan. “Temporal Logic Queries”. In CAV’00.
[CDEG03] M. Chechik, B. Devereux, S. Easterbrook, and A.

Gurfinkel, “Multi-Valued Symbolic Model-Checking”. In
TOSEM, No. 4, Vol. 12, pp. 1-38, 2003.

[CG06] M. Chechik, A. Gurfinkel. “A Framework for
Counterexample Generation Exploration”, to appear in
STTT’06 (shorter versions in TACAS’03 and FASE’05).

[CGJLV00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith.
“Counterexample-Guided Abstraction Refinement”. In
CAV’00.

[DGG97] D. Dams, R. Gerth, and O. Grumberg, “Abstract
Interpretation of Reactive Systems”. In TOPLAS, No. 19,
Vol. 2, pp. 253-291, 1997. 164

References
[GC04] A. Gurfinkel, M. Chechik. “How Vacuous is Vacuous”.

In TACAS’04.
[GC06] A. Gurfinkel, M. Chechik. “Why Waste a Perfectly

Good Abstraction”. In TACAS’06.
[GCD03] A. Gurfinkel, M. Chechik, B. Devereux. “Temporal

Logic Query Checking: A Tool for Model Exploration”. IEEE
Transactions on Software Engineering, Vol. 29, No. 10, pp.
898-914, October 2003 (shorter versions in FSE’02 and
CAV’03).

[Mc93] K. McMillan. Symbolic Model Checking. Kluwer
Academic, 1993.

[PPV05] C. Pasareanu, R. Pelanek, W. Visser. “Concrete
Search with Abstract Matching and Refinement”. In CAV’05.

165

Acknowledgements
We thank the model- checking group at CMU (Ed

Clarke) and the BANDERA project (Matt Dwyer,
Corina Pasarenau) for the source of and the
inspiration for some of our slides.

